
m 

Stochastic Processes, 
Estimation Theory, 

corn 

;=and E r n  Image Enhancement 
3 tY 

rCI 
rg 
\ 
m 
W 

Touraj Assefi 

. 

Jet Propulsion Laboratory 
California Institute of Technology 

Pasadena, California 



. 

Stochastic Processes, 
Estimation Theory, 

and Image Enhancement 

Touraj Assefi 

Jet Propulsion Laboratory 
California InstitLte of Technology 

Pasadena, California 



This publication was prepared by the Jet Propulsion 
Laboratory under Contract No. NAS 7-100. National 
Aeronautics and Space Admistration. 

JPL PUBLICATION 78-10 June t978 



lhis book presents an introductory account of stochastic p-. estima- 
tion theory, arid image enhancement. It is primarily intended for first-year 
graduate studrrru and practicing engineers and scientists whose work requires 
an acquaintance with the theory. The subject matter has evolved from a 
course given at the graduate level in the Department of Electrical Engineering 
at the University of Southern California. 

nK mathematical background assumed of the reader includes concepts of 
elementary probability theory. the ability to use Fourier and Laplace trans- 
forms, and an understanding of the basic ideas of linear system theory. Famil- 
iarity with linear algebra is helpful but not essential. There is, in general, no 
substitute for a rigorous mathematical treatment: however, it is felt that the 
concepts and the important ideas to be presented may be obscured if too 
many mathematical details are included. Nevertheless, the book ic nut a 
"cookbook"; the definitions and theorems are carefully stated. 

The approach to and coverage of the material found here were heavily 
influenced by the author's practical experience with problems encountered at 
the Jet Propulsion Laboratory concerning pointing accuracies of science 
instruments for various spacecraft. I t  is. therefore. hoped that the book will be 
useful to a large class of engineers and scientists working in the areas of guidance 
and iontrol, communications. or other disciplines involving stochastic processes. 
estimation theory. and image enhancement. 

To make the book self-contained, the first chapter reviews the fundamental 
concepts of probability that are required to support the main topicc. The 
appendices discuss the remaining mathematical background. The reader is 
adwsed to review the appropriate sections before attempting the problems at the 
end of each chapter. There are many examples scattered througliout the text. 
and the problems at thc end of each chapter must be considered an integral 
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part of the material. It is emphasized that the notation is generally indepen- 
dent from OIK chapter to the other. 

I wish to thank Ceorg Pace and Walter Havens for their encouragement. 
Thanks are due Michael Griflii and G o r g e  Jaiiuin for their editwial comments. 
FuaUy, I wish to thank Professor Nasser Nahi for d lwing me to teach the 
course. upon which this book is based. at the University of Southern California. 
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CHAPTER 1 
REVIEW OF PROBABILITY 

1.1 INTRODUCTlON 
The conccpt of probability is used in a wide variety of scientific fields, such 

as genetics, control, communication, econometrics, and many others. In whdt 
follows the fundamental concepts of probability are discussed. References 
[ I  ] -[IO] were utilized in the composition of this chapter. 

1.2 SAMPLE SPACE, EVENTS, AND BASIC CONCEPTS 
OF PROBABILITY 

1.2.1 Sample Space 

Consider an experiment denoted by 8. By sample space, we mean the set of 
all outconics o i8 ,  which is denoted by S. The set S is also called the universal 
set. 

Example 1 

top. The sample spacc S is given by: 
Let 8 be the experiment of tossing a die and observing the number shown on 

S = { I  ,2,3,4,S,6 1 

1.2.: tvents 
An event A is a subset of S. i.e.. A is a set of some outcomes which are 

members of S. Note that if A and Bare events, so are A C, B. A n B. etc. 
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Definition I 

a n  occur simultaneously. i.e., A n B = d, where P denotes the empty set. 
Two events A and B are mutually exclusive if there is no way that they 

1.2.3 -sic Concepts of Probability 

Let S be a sample space associated with the experiment 8. With each event 
A we associate a real number denoted by 4.4) and define it as the probability 
of A. The following conditions must be satisfied: 

( I )  0 <P(A)  < 1 

(2) qs) = 1 

(3) If A n B = $. then 

(4) If A , ,  A, ,  . . . , are niutuslly exclusive events. then 

1.2.4 Some Important Results 

The following conditions are true and are left as cwrcises: 

( I )  4,)) = 0 

(3) P(A u B )  = O A )  t S R )  - P(A n B) 

( 2 )  0.7) = I - 0.4). where A is tlic complcnicnt of A 

1.3 CONDITIONAL PROBABILITY, TOTAL 
PROBABILITY, BAYES’ THEOREM, AND 
STATISTICAL INDEPENDENCE 

1.3.1 Conditional Probability 

event A such that B has occurred and is defined as: 
Let A and B be two cvcnts. Then /‘(AIS) is denoted as the probability o f  

( 1 . 1 )  

2 



1.3.2 Total ProbaMlity and Bay-' Theorem 

Given a sample space S associated with the experiment &and given events 
A , ,  A,. . . . , A,, we say A , ,  A,,  , . . , A ,  represents a partition if the follow- 
ing conditions are satisfied: 

k 
(2) u Ai = s 

i= I 

(3) P(A,)> 0, for all i = I , .  . . , k 

Now, let A and B be events. Then we can easily show that: 

(1.2) 

T h e  above result is called the theorem of total probability 

Utilizing the definition of conditional probability and taking advantage of 
Eq. ( 1  2). we now get: 

The above result is called Bayes' theorem. 

Example 2 

An electronic company producing transistor radios has three plants produc- 
ing 15%. 35%. and 50% of the entire output. respectively. Assume the prob- 
abilities that a radio produced by thess plants is defective are 0.01.0.05. and 
0.02. respectively. I f  a radio is cliosen a t  random front the entire company, 
what is the probability that it is defective? 
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Solution 

Let 

B = {x (radio): x is defective) 

A, = {x: x is chosen from plant i )  

Using Eq. ( I  .2 )  yields: 

3 

4s)  = c p(sl A,) P(A,) = 0.01 x 0.15 + 0.05 x 0.35 + 0.02 x 0.5 = 0.02') 
i= I 

Example 3 

probability that it comes fro111 plant 2? 
Assume a radio chosen at .andom is found t o  be defective. What is the 

Solution 

From Bayes' theorem given via Eq. ( I  .3), 

1.3.3 Statistical Independence 

Two random events A and B arc indepcndwt if and only i f  

P ~ A  n B )  = P(A 1 m) 
In what follows, we slid1 define random variables. and probability distribution 
and density functions. 

1.4. RANDOM VARIABLES AND PROBABICTTY 
DISTRIBUTION AND DENSITY FUNCTIONS 

1.4.1 Random Variables 

ht 6' he an cxperinient and S be the corresponding s;itnplc sp i~w.  Then a 
rlndoiii variahle is  a real function A'(-) from S i l l to  the set of r ed  numhers. 
Le.. cor every [ E S. X ( [ )  is real. 

b 



The choice of the term "randoni variable" is not very appropriate because 
X ( * )  is a function. not a variable. However. we shall use tlie terminolog)? in 
order to be consistent with the literature. In general, tlie random variables 
niay be real or complex; however, unless spec:fied otlierwise. X( *) is assumed 
to be real. Tlie random variable niay be continuous or discrete. 

Example 4 

be : 
A fair coin is tossed three times. The saniple space S is now considered to 

S =  {HHH. HHT, HTH, HTT. THH. THT. TTH, TTT] 

where H denotes head and T denotes tail. Define X ( * )  = number of IieaJs. 
Thus. X(HHH) = 3, .Y(tlliT) = 2 ,  etc. Tlie random variable so defined is 
discrete. 

1.4.2 Probability Distribution and Density Functions 

Lei X ( *  ) be a continuous (piecewise cmtinuous) random varia...: . Then 
distribution function corresponding to A'( * ) is defincd 3s: 

where a is 3 real iiuniher. 

Thus. F,y(a) can now be written as: 



Let us single out those random variables such that there exists a function 
fx (=)  2 0, where 

The function f x ( x )  is called the probabilr. density function (p.d.f.). If fy(x) 
is continuous (piecewise continuous). utilizing the Fundamental Theorem of 
Calculus, we obtain: 

i I . 7 )  

fx(x) is sometimes defined via Eq. (1.7). 

It is also easy to verify the following properties: 

(3) R-m) = 0 

(4) If f x ( x )  IS continuous, then 

where Ax > 0 and x G E < x + AY (using the Mean Value Theorem of 
Integrals). 

(5) f [ X > x ]  = 1 - P ( X ! G x ]  = 1 - F # )  

- 
(6) If X ( *  ) is discrete. then f ( X i )  Z 0 and x P ( X , I  = 1 

i- I 
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Let us now defme FA) for the case where X ( * )  is a discrete random 
Variable: 

Henceforth, we shall drop the subscript X from Fx(*)  and fJ*) if there is no 
ambiguity about the random variable X(= ). 

Some examples of common continuous distributions are liven below. 

(1) uitifonn 

u G x Q b  1 
f , (x)= 6 - B ’ I, otherwise 

( 2 )  Cmrssims or N o d  

where m and u are parameters. 

(3) Raylei& 



If there are two mndom variabk XI(.) and X2(-)  with posdble outcomes 
xI and x2. then a twodimensional joint distributh functian is defbred as: 

similar to the Onedilnensional case. the two-dimensional probability density 
fimction fxIx2(xI.x2) is a function such that: 

(1.9) 

whenever a2FPxlk2 exists. It can be easily be shown that: 

The following properties are true for joint distributions: 

(1) Fx 

(2) Fx 

(3) Fx ( - .x2 )=F  (x2)andFx ( x l , = ) = F x  (x,) 

(4) fx  ( x l , x 2 ) > 0 , f o r d 1 x l  andx2 

(-, m) = 1, F, (--, --) = 0 

(x,, x2) is nondecreasing with respect to each arvment 

1 2  1 2  

I 2  

1 2  x 2  1 2  1 

I 2  

The distribution and the probability density functions Fx,(xl) and 
) are called marginal probability distribution and density functions fx 

(statistics), respectively, and that: 



pht marginal statistics Fx2(x2) and fx2(x2)  art j t f i  m a similar manner. 

l a  A and I )  be events such that: 

flAI B) = (1.11) 

where P(B) is assumed to be f 0. 

The conditional p.d.f. fx I(al X2 = #) is given by: 

Utilizing Eq. ( I .  12) yields: 

In a similar manner. we can show: 

(1.13) 

(1.14) 



By combining the last two equations, 

(1.16) 

Ihe last expresim is called the Bayed theorem for probability density func- 
tions and it is druirr to the Baya' theorem stated for the probability. 

Tht conditional density concepts can eadly be extended tu thc vector case. 

For the sake of simplicity we shall discuss the function of a single random 
variable and then extend it to multivariables. 

Let X ( - )  be a random variable and le1 g(*) be a real valucd function such 
that 

and suppo6e F,(x) and f x ( x )  are given. Let us find F,Q) and fyCy). We shaY 
give the results via the following theorem. 

TkORlnl 

Let g(x) be J piecewise continuously differentiable function and that for 
every y there exists m points x, .x2, .  . . .xm such that 

y=g(x,) .  k =  I,?, ... . m  

and 

g'ix,) # 0. k = 1.2. . . . , m 

Then the following will hold: 

(1.17) 
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I * 

- 5  
Let X and Y be random v a r i a k  arh that 

Y = a X t b  

I, ow fycv)  can be obtained via Eq. (1.17). Thus. 

*I' mans "for aU." 

11 



l e t  X and Y be random variables such that: 

If p > 0, f&) can be calculated as: 

Y 

x'-4- I "2-vF 

which completes the problem. 

12 



b t  X and Y be random variables wi”r the joint p.d.f.f,,(x,y) and let 

z = Ax$) and w = h(x,y) 

be real and continuous differentiable functions. We can obtain f iw(rw) in 
terms of fxY(xsv). For the sake of simplicity, let us assume that g(x.y) and 
h(x,y) are one-to-one functions. Then, it can be shown that: 

where x and y must be solved in terms of I and w, and J(x,y) is given by: 

(1 20) 

If there are 

ordered pairs such that 

I = g(xi.yi) and w = h(xi.yi). i = 1.2, . . . , m 

then Eq. (1.20) can be generdited by: 

The result can be extended to the general case. where we are dealing with an 
n-random vector X. 

13 



Let X = (XI.. . . ,X,) and Y = (Y,, . . . , Y,) be random vectors such that: 

Y = h(X) ( 1.22) 

and, for the sake of simplicity, ajSume h is one-to-one, Le., invertible. 

Let g be the inverse function given by: 

x = g(Y) = g(h(X)) ( 1.23) 

Let A and B be events such that B = [Y < y]  and A = [X < g(y)l .  
Remember that the notation [Y Q y ]  means {t E S :yi(F) <yi for all i = 
1,2,. . . ,m}. It i s  obvious that 

since they both represent the same probability. Thus, 

( 1.24) 

The last integral is actually: 

SY' . ..I" fYl . . . Y" 01,. . . . ,.V,)JY, . . . 4vn = 
- m  - m  

If we differentiate Eq. (1.24) or (1.25) integrals with respect to each corn- 
ponent of y, we obtain: 

14 



where ag(y)/ay is the determinant of the Jacobian 

Equation (1.25) can also be rewritten as (assuming i3gCV)la-v # 0): 

where 

( I  2 7 )  

If h i s  not 3 one-to-onc function. the rcsuit can bc cxtciidcd in 3 iiiaiiiicr 

siiiiilar t o  Eq. ( I  .2 I ) .  

15 



1.6 SOME USEFUL DEFINITIONS AND CONCEPTS 
Let X be a random variable and g(*) be a real function. Then the “expecta- 

tion” or th. “mean” of g(x) is defined as the Stieltjes integral: 

If the readzr is not familiar with the Stieltjes integral, then Eq. (1-28). when 
Fx(x) is differentiable, would reduce to: 

which is used in most engineering books. 

The “‘variance” of X is denoted as 0: and is defmed as: 

u3( = E(X - m)2 ( I  .30) 

where m = EX, and ax is called the “standard deviation.” It can be shown 
that: 

U: = E ( X 2 )  - m2 (1.31) 

We shall also have the simple but useful inequalities: 

and 

P[ IX- ml >Ku,] <- 1 

K2 

where K is a positive nuniber and 11 is any integer such that E (  IXln] < w. 

16 



If X(*) is a random vector, then 

where € E S. The case where I? = 2 and X([) = (XI([)X2([)) = (xI.x2 1 = x, + 
jx ,  is defined as the complex random variable and it can be shown that: 

where p and q are greater than I and ( 1  /p )  + ( 1 /4) = I .  The above equation is 
called the Holder inequality. 

For the special case. whew p = 4 = 2, we get: 

ElXlX,IC(EIX,12) '~2 (ElX212)'/2 ( I  .33) 

Equation (1.33) is called the Schwari inequality and will be used often. 

1.6.1 Covariance and Correlation Coefficient 

Let mi and u,? be the mean and the variance of X i .  and let us deline 

Then from the definition it is obvious that pii = u:, and, for i # j .  we call pi, 
the covariance of Xi and Xi and pi, denned by: 

( I .34) 

3s the correlation coeflicient between X i  and X.. I t  can be checked that - I G 
prj < I or, equivalently. lpijI < I 

I 

17 



The matrix A, is defined by: 

(1.35) 

nd is called the covariance matrix. Note that pii = pji;  thus A, is a sym- 
metric matrix and, using the Schwarz inequality given by Eq. (1.33), we have: 

Ip i j  I Q (I i (I j = Ipi,l”2 lpi/l”2 ( 1.36) 

which verities lpijl Q 1. If IAxI # 0 or, equivalently, the matrix A, has the 
rank n, we say Ax is nonsingular. 

1.6.2 Convergence 

Let X, 3,. . . . J,, . . . and X be random variables defined from S + R. 
Then the set A = {# : A,(#) -& X(t) } is an event (that is. A C S). Thus the 
probability that X, converges to X is defined. 

There are several criteria of convergence. The following modes are defined 
for both real and complex valued random variables as n 4 m: 

( I )  X, converges in probability (or P-measure) to X. if for any given e > 

( 2 )  X, converges in quadratic mean or mean souare (m.s.) to  X if E(IX,, - 

(3) X, converges with probability one or “almost ewywhere” IO X if 

O , P ( I X ~ -  X I > e ) + o ( o r l i m Q I X , -  X I > e ) = O a s n + = ) .  

XI2) +o .  

P(X ,  + X )  = I ,  or. equivalently, P(X, k X )  = 0. 



1 .?. NORMAL OlSTRlBUTlQNS AND CHARACTERISTIC 
EQUATIONS 

The most important dis\ribution is the normal distribution. The normal 
p.d.f. fJx)  is defined as: 

where X is a random variable (one-dimensional). 

The erior function erflx) is defined as: 

{ I  .37) 

( I  .38) 

It can be easily verified thzt: 

Note that if wc take the derivative of F(x) we get f(x). i.e., 

as asserted. 

Note that in the above equation we have used the Fundamental Theorem 
of Calculus. which states: If 



where h ,  and h, are differentiable and g is continuous, tlien 

From the ahove equation .e get: 

I t  can be verified that for the noniial distribution die p.d.f. IS symmetric 
about the niean ttt and 

A h ,  i t  can be sliown tnat if A', and ,Y2 are independent noriiial randorli 
variables. with respel.tive ( t t i l  .ol atid ( tu ,  .u2 ), then their s u m  X = x I + .r2 is 
a l w  nornial with niean  ti = ? t i I  + i t t2 arid variance u2 = o: + u i .  This.  tlie 
suniii;ation o f  indcpcndet:t tioi mal ratid,1ni variables produccs a new iioriii31 
random variablc. ilowevcr. tlic ''Central Liiiiit Tlieorcni" states (tinder fairly 
wide conditions; that the slim of a larpe number o f  irdcpeiident randoiii 
variables is approxiriiatcly norinally dist rib !led. even tliougli each indwidual 
random variable may no! be noriii;il. 

1.7.1 The Vector Case 

Let X = ( X I .  X,. . . . . "y, 1' . wliere T is tlie transpose. hc a norniall!, 
distiibuteu randotii vector: thus. 

20 



where A io the comiance of X. is., A&E[ (x  - mMx - m i l l ,  I A l  is the 
detenrdnsat of A, and 

It can be shown that A , m  also be written as 

Nourtiodly we can write fx(x) = c(xsn,A), which means the Gaussian 
density of X has the mean m and the covariance A. 

In order to derive some important properties in the normal random vectors. 
we aced some basic defiitions. 

Recalling from the onedimensional random variable. let X be a (one- 
dimensional) random variable. Then the characteristic function of X is defined 
as: 

It  is seen that the c!iaracteristic function is the Fourier transcorm of fx (x ) ;  
however, the positive sign in the exponent simply means that we must use the 
negative sign in fitding the ilrverse. Thus. the density function fx (x)  can be 
obtained from (using the Fourier transform pair): 



For a diPcussion of the Fwrier transforms, see Appendix C. 

It ara be shown Illat 

Using Eq. ( I  -42) where 

and making use of 

The m a t  useful property of the characteristic function is that it relates the 
sum of independent random variabies. It is also used to simplify calculations. 

1.9. DEFINITION EXENDED TO RANOOM VECTORS 

The characteristic function of a random variable X = ( X , ,  ...,X,,)T is 
defined as: 

Now let us apply the definition given by Eq. (1.44) to the Gaussian random 
vector X = ( X ,  , . . . , X,,)T and make the following claim: 

22 



lbeolcm2 

vhe chacacteristic function of the random rector X is given by: 

Road 

Lrf; as an exercise. 

TheoreJa3 

If two n m a l  rectors X and Y arr Gaussian with respective means (m- 
tors) mx and my and are alsu uncorrelated. then they are statistically urde- 
pendent. 

Roof 

&I X be n-dinmsional and Y be m-dimensional with respective covariances 
Ax and Ay. 

Define a vector 

23 



If X and Y are uncorrelated. rfien AXY = 0: hmce 

This substituted in f(x.y) yields: f(x.y) =fX(x)fL(y). Done! 

24 
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1.1 An tun coatahas4 grem and 6 Blue marbles. Two marb;esm drawn out 
tagether. One of tkem is tested aad f d  to be blw. F i  the prob 
ability tbat h other one is atso blue. 

12 Liet A a& B be brdepeaeent events associated with an experirnent. If 
dre pmbability that A or B occurs is 0.7. while the poobability of 
txcmemx of4 is 03. detennine tbe probability of occunence of B. 

13 Three dice are t h m .  Ed the probabilities o f t h e  -to of obtaining 
dre sum of 10. 11, and 12 points. 

1.4 A amtinuouo random rariawe X has tbe distribution fiurction: 

[ 1 - (1 + ax)  exp (-ax), if x > 0 

(a) Find the characteristic function. 

@) F i  the ~FSII and the standard deviation. 

Imt the joint probability de~sity Plnction of the random vector (Xu)  be 1.5 
@en by: 

x y e x p  (-(xz tyz) /2) ,  i f x a n d y > O  

otherwise 

fx  , k Y )  = 

6) Fiid fxW. .fY69, flw b), and f0, k). 
(b) Ate the random variables X and Y independent? 

1.6 In the previous problem, if in addition we have the random variables 2 
and W given by: 

(e) Z = a X t b Y ,  W=cXtdY 

@) z= YX2 qx), W=XY2 v(Y) 

where @e) is a unit step function, find fzw(z, w). 

1.7 Finu the probability density functions of 2 and W. Given: 



(a) Determine the mean m d  the variance of the random variable Z = XY. 

(b) Determine the mean and the variance of the random variable W = X' + 
y. 

1.8 If X and Y are independent randomi variables such that: 

where U(y) is a unit step function. Show that the random variable W = 
XY is normal with mean zero and variance A'. 

1.9 If m a vector case of a normal random vector, n = 2, ml = m2 = 0 and 
p, I = h2 = 1, show that: 

where p = p, I = pl z. 

1.10 

(a) If A is an m X II n nx such that 

X -  

X" 



show that if X is normal so is 2. Use the property of characteristic 
equations given by Theorem 2. That is, show that the characteristic of 
2 is: 

(b) Show that Ax = A  "8'. 
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CHAPTER 2 
STOCHASTIC PROCESSES 

2.1 INTRODUCTION 
Very often we are interested in observations that are made over a period of 

time and that are affected by random chance. This situation is termed a 
stochastic process and is defined below. 

2.2 DEFINITIONS AND EXAMPLES 

Definition 1 

A stochastic process X( f ,o )  is a function of two variables, where o is an 
element of the sample space and f is a parameter (time) which belongs to a 
set T (time interval). 

Definition 2 

firnctiun of the process. 
For every wg E S (sample space), the function X(f,w,) is called a sumpk 

The process X(f,w), in general, can be complex. but, without any loss of 
generality, we shall discuss X( f .o )  when it is real. Thus, to each sample point 
o E S (sample space), we are assigning a waveform A',. which is the function 
o f f  (time) such that: 

x,: (r: + X4f.U) 

Ilence. each sample space will have a collection of waveforms. each assigned 
to a nieniber o E S The collection of all of these waveform (as many as the 
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cardinality of S) is called an ensemble. Thus, each individual member of the 
ensemble is a sample function. 

Example 1 

is the collection of four outcomes: 
Assume that we toss a coin twice in succession. Then, our sample space S 

s = (HH , TT , HT , TH) 
- . c c - c . ) c  

WI O 2  w3 w4 

There exists four sample points w ,  , w 
Occurrence is 1/4 (the coin is a fair one? 

wj. and w,,. The probability of each 

Let us now define a function X,(*): S + R such that: 

Thus. the ensemble consists of four elements (as many as the cardinality of S, 
which is 4). 1x1 us denote the ensemble by t". Thus, 

8= {sin t .  sin 2 t .  sin 3t ,  sin 4 t )  

and the probability assigned to each waveform is also 1/4. 

Remark 1. The cardinality (number of sample points) corresponding t o  the 
sample space S may be finite, numberably infinite or dense. 

Remark 2. For a stochastic process X,(w) or X(tw)  is an appropriate 
designation. However, in comnion practice the process is represented by X ( t ) .  
which actually means X(r,w). 

2.2.1 More Words About X(t)  

The notation of X ( t , u )  may hc better understood hy the physica! plie- 
nonienoii. Consider a systrin such as a radar antenna recciver. Suppose the 
noise s i p d  at the output is of interest. Each time we turn on the system. i t  
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will yield a different noise waveform. The collection of all of the noise wave- 
forms is the ensemble of this process (see figure below). 

It is important to mention that each sample function (waveform) is 
assigned to a single point w E S. Thus, after w is specified, the waveform is 
deterministic (not random). The randomness is associated with each sample 
being chosen (occurrence of a sample). 

Example 2 

Suppose a receiver (antenna) detects signals of the form: 

X ( f )  = a cos (of + 8) 

where a (amplitude) and 8 are both random. Suppose by come sort of prac- 
tical experience we know the distribution functions of 8 and a (for example, 
8 or a could be Poisson, Gaussian, uniform, or any other probability density 
function). 

Let us assume a is Gaussian and 0 is uniform over the open interval (0.3~1. 
Then, 
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and 

Corresponding to each sample function, a and @ are assumed to be constant, 
but they definitely vary from one sample function to the other. 

f,, 
W 

Example 3 

Consider 

where a is a random variablc. and b is 3 constant. 

Remark 3. F1)r the one-ditiier.%mal case X ( t ,  w )  bccomes a random 
variable for each f i v d  t = t ,  since X ( f . , w )  becomes a function of w only. 
1.e.. 

X (  , . o 1: S --* R 

which is the detitiition of the random variable. 
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Remurk 4. Remzmber that we use the notation X(t,,W)(or X,,(W)) by 
either X ,  or X(t , ) .  

2.3 FIRST-ORDER STATISTICS 
The distribution of a real process X(r) for a fixed r = 1 ,  is defined: 

(2.1) 

Remember: { X ( r , )  < x) = !o E S: X ( t , ,  w )  d i). 

Definition 3 

The first-order statistics are those items of information that can be com- 
pletely determined from FX(x, t ) ,  such as /Jx. t ) .  nr(t) = EX( t )  or E[X(r)]  2 ,  

uX(,). etc. 

Definition 4 

2 

A nonnegativi: function fx(x, t )  > 0, such that 

(2 .2 )  

is called the probability density fuiction (p.d.f.). If Fx(x: r )  is differentiable. 
then, from Eq. (2.2): 

(2 .3)  

Note that condition (2.2) is a weaker condition than that of (2.3). because 
f ( x .  1 )  may exist even though FJx, f )  may not be differentiable. 

Note that: 

will be denoted as either PI(/) o r  p ( t )  in what follows. 
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Example 4 

a is a Gaussian random wiable: 
Let us continue example 3. X ( t )  = at + 6. where f > 0, I ,  is a constant, and 

(2.4) 

Find the first-order p d f .  fX(x. :). 

Solution 

From X(f)  = ai + 6, we get a = ( l / t )  ( X  - b).  We know: 

Said 
fx(x. I )  = -- 

I% I 
Now &Ida = t ;  since t > 0. we have 

and 

I a =-1.* - b )  
I 

Hence, 

Imp(irtant Reminder. From now on. we shall drop the subscript X from 
Fx(x, t )  and f x ( x .  t )  whenever i t  is appropriate. 

Example 5 

Obtain the mean and the variance of X ( t ) .  
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EX(r) = m(r) = rE(g) + m b )  = r 0 + B = b 

Rcmmfir 5 Regades of the prametcr r ,  the mean of X(r) is b; however, 
both E(X2(r)) and u:(() are dependent on r. 

- 6  
Consider the random process X(f )  given by: 

X(r )  = A coo (0,f  + e) 

where 8 is a random variable which is uniformly distributed over I0,2n] and 
the amplitude A is constant. 

Obtain the following first-order statistics: 

(a) Probability density function 

(b) m(r) 

(c) ’The variance of X 



!Mutbn 

(a) We can consider the sample functiun x to be 

where x and 8 denote the parameters (possible values of a random 
variable X and e, respectively). Sina Q is unifomlly distributed, we 
get: 

The piobability density function f,(x.r) can be obtained as follows: 

because there are two values of 8 E [0,2x] such that x = A  cos (wof + 
8). one value of 8 is obtained where 0 Q w0t + 8 < i~ and .the other 
is obtained where R < Mor + 8 < 2n. 

Now 

dr - de = -A  sin (wol + 0 )  = - . 4 d  - cos2 (wet + 0 )  

and 
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I 
2s 

coa,(aof +e)- d @ = O  

Alternatively, 

A’ A 2  --. 0; = E(X’(r)) - E’:2X(r) = .. - 0 = - 2 
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Remember that: 

2ASECONDANDHlGHERORoEFlSTA~ 
For any arbitrary set ai I-values t i ,  t2 . .  . . . I, and random variables X ( t , )  

= XI, . . . , X(I,,) = X,. we derme the ndimensional joint distribution as: 

e x l  .x2.. . . .x,. I ,  . r 2 . .  . . . I,) = P{xI G XI.. . . , X, G x,} 

and the p.d.f. f(x,. . . . , x I .  r , ,  . . . . In) is a function such that: 

( I )  f(x,. - .  . .x , . t , .  . -. .t,) > 0. for 4 x = QC I' . . . ,x , \~  and 
' I , ,  . . . 

(2) e x 1 *  . . . .XI ,  I l .  . . . . I " )  = 

JX1 . .J'" f ( X , .  . . . .X,' I , ,  . . . , r , ) d * , . .  .dx, 
-OD 

Again. if F has a partial derivative with respect to x,, . . . .x,, then: 



24.1 -;Covariance 

The cordation between two \Imvefonns from the same ensemble gives 
some useful information about the waveform. The f i n t a d e r  statistics do not 
yield 1 the information about the random process. since the firsturder p.d.f. 
cannot indicate the dependence of the random process (signal) at two differ- 
ent times (remember that X ( r , )  and X(r,) are two different random vari- 
ables). Thus, it d d  be advantageous to  obtain a measure of relating the 
process mI ) to nq- 

For the real process X(r), the autocorrelation function Rx(r l . r , )  is 
defined as: 

and it can easily be seen that it is a function of tl and t2. 

The corresponding covariance (autocwariance) of X(r )  is defined as: 

Note that: 

(9  -6) 

Thus, from (2.6). it  is obvious that if rl = f 2  = f .  then: 

More Definitions 

If X ( t )  and Y(f) are two processes that (one or both) could be complex,. 
then Eqs. (2.5) and (2.6) are generalized as follows: 



- Rx(t,,  r 2 )  - m p f  

where "*" denotes the complex conjugate. 

The cross-correl;ltion between N r )  and Y(r) is defined as: 

(2.9) 

and its corresponding crasscovariance as: 

It is obvious that the nth order p.d.f. contains all the information about the 
first (n - 1 )  p.d.f. For example. we shall illuslrate this point by the second- 
order p.d.f. Let f ( x ,  ,x2. I , ,  t 2 )  be given, then: 

We know that 

and the conditional p.d.f. can he obtained as the ratio of f(x,,x2,fI. 1 , )  
over f ( x  I , t I ). 

The correlation coefficient between X ( f I )  and X( f , )  is defined as: 

(2.1 I )  

as expected. 
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26  mATIONARY PROCESSES 

Dedlniton 5 

A stochastic procerrs X(r) is said to be strictly stationary if the entire 
family of its fdtedimensional distributions are invariant under a translation 
in t. That is, for given t , .  f 2 . .  . . .f,, time points, the distribution of X(r,  + 
T), atz + T), . . . , X(rn + T )  (for X(*)  real or complex) is independent of r. 

:. F(X,.X~, . . . . ~ , . r , .  . . . , r n )  = F(XI,x2. . . . .xn .  rI + T.  - . . , tn t 7 )  

(1.12) 

for all n. Thus, we need to check Eq. (2.12) for all finite n. For n = 1, since 
F(x. r )  = fix, r + T )  or f(x, r )  = f(x. r + 7 )  (if F is differentiable), then: 

EX(r) = EX(t + r), for all r (2.13) 

which implies EX(r) must be constant. For example, let r = - r ,  since EX(r) = 
EX(r + T )  = EX(r - r )  = EX(0) = constant (that is, EX@) = EX(0) for all r ds 
well). 

Conclusion 1 

time r. 
For a strictly stationary process EX(r) is constant and is independent of 

Now if R,(r,, r z )  exists for all r ,  and r 2 ,  then by definitior. of 
R,O, f z ) :  

Equatidn (2.14) is true for any r l . f 2  and T. For the special case where 
r = - t , ,  then R x ( r l ,  r 2 )  in Eq. (2.14) becomes: 

(2.1 5 )  



Thus, we have shown that Rx(rl ,  t2 )  is a function of time difference t2 - I ,  
(for the strictly stationary case). 

Conduslon 2 

It turns out that for the strictly stationary case we have R x ( f l , t 2 )  as a 
function of the time difference t2 - t . From now on, when this condition 
prevails, we shall write R,(t,, t 2 )  as ~ 6 ,  - t ,  ). 

conchrsion 3 

For strictly stationary processes, we have: 

EX(r) = constant = m (2.16a) 

EX(t,) X* ( f2 )  = R(r2 - r , )  (2.16b) 

The condition given by Eq. (2.16) is a consequence of a strictly stationary 
property (a necessary condition). In a strictly stationary process, we must 
have at our disposal all of the joint distribution functions for k =  1, .  . . , n 
( f h t e  n )  and, in addition, they must satisfy: . 

F(x,, . . . , x k ,  t , ,  . . . , r p )  = fix,, . . . , x k ,  r ,  + T, . . . . tk + T) 

for all k =  I , .  . . , n  and all T. 

The above condition is very stringent. It turns out that very often the 
second-order statistics are sufficient to characterize many physical situations, 
which leads us to define some important terms. 

Definition 6 

(2.1 6b) are satisfied. 
The process X ( t )  is stationary in the wide sense, if conditions (2.16a) and 

2.5.1 Some Important Properties for the Wide-Sense Stationary 
Process X(t) 

(1) R(t2 - t , )  = R*(r, - t 2 )  or, equivalently, R(r) = R*(-t),since R(r2 - 
t l ) = E ( X ( r , ) X * ( f 2 ~ ~ = ~ [ ( X ( f 2 ~ X * ~ r l ~ l *  =R.(r, - f 2 ) .  

(2) Since El X(r)l = E [ X ( r )  X'(r)]  = NO), then, uX( , )  = R(O) - m 2 ,  
which is independent of time t. 
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(3) From the Cauchy-Schwan. inequality: 

-1 

E[ I X(r,) X0(r2)l 2 ]  Q E [  I X(r,)I 2 ]  E[  I X(r,)12] * 1 R(r)l Q R(O), 

for all t 

I I d 
I b t  

Exanrple 7 

A quantized process has associated sample functions, where each sample 
function consists of sequences of pulses of unit width. 

The pulse amplitudes take the binary numbers + I  and - 1  with equal prob- 
ability. n e  successive amplitudes ate independent. Assume that the starting 
point of each sample function is random and uniformly distributed over a unit 
interval (denote the starting time as e). Find the correlation function of X(r). 

I I  1 

b 
-1 I I I 

I 

(bJ 

r 

r1 - (rl - 1i  l 

r, - I '1 

Solution 

The random processes have discrete values of t 1 and - 1. Let X(t,  ) = i and 
X ( r 2 )  = j .  where i and j could be + I  or - 1. Then, 



where 

+ ( - I ) ( -  I)p(- I; I )  t (- I ) ( I ) P ! .  1.1) (2.17) 

Now if we obtain P(i, j )  for i and j corresponding to + I  or - I ,  we will be 
done. These probabilities are obtained as follows: 

For a sample function, let 8 be the starting point of the pulse in which t l  occurs 
(uniformly distributed, see part (c) of  the above figure). Now f 2  either takes 
place during the same pulse as f l  < f2  (case 1) or during another pulse; we 
now write: 

(The 11’2 is used because :>utside the pulse, given X ( f , )  = I ,  it  is equally likely 
that X(t21 he eitt.er + 1  01 - 1 . )  

Now p(I.1) can be written as. 

if t 2 - t  > I  
I .  
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Note that 

P[r2 < e  + I ]  = P [ 6 : * t 2  - I ]  = I - P [ 6 < r 2  - I ]  = 1 - F(r2  - I )  

and remember that f i r )  = r - (rl - 1) = r - rI t 1 

1 - tl) .  if t2 - r l  C I 

if r2 - t l  > I 
1 
4 ’  
- 

Ffl , - l )=P(- l ,I)  = 

Now, for 7 = rz - r ,  ( I ,  could be larger than r z ) ,  the general case R x ( r )  
can be found (see Eq. 2.17): 

Henceforth. throughout the text, unlesr specified otherwise, by the sta- 
tionarity of a process X ( t )  we mean stationarity in the wide sense. 
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Definition 7 

have : 
Two processes X( t )  and Y(r) are uncorrelated if, given any t I  and f 2 ,  we 

(3.18) 

tu a consequence of condition (2.18). we have: 

De5ition 8 

If E [ X ( t , )  Y * ( f , ) ]  = 0, then we say XU) and Y ( t )  are orthogonal. 

Note that C x y ( r l . t 2 )  = 0 implies that [ X ( t , )  - m x ( t l ) ]  and [Y(f,) - 
my(t2) ]  are orthogonal processes. 

2.6 CONTINUITY AND DIFFERENTIABILITY 
The continuity of the process X ( t )  with respect to  t is restrictive. However, 

the continuity in the quadratic mean (mean square) is not as restrictive. We 
say the process X ( t )  is continuous at t = to in the quadratic mean (q.m.1 if 
E [  I X(to)12]  4 c t s  for t = to, and 

If condition (3.19) holds for every t E la. h ] ,  then we say X(t )  is continuous 
in the quadratic mean (mean square) in [a. 61. If condition (2.19) holds for 
t E (--,=), we say X(r) is continuous (in the q.m.) everywhere. 

It is left as an exercise to verify the following claims. 

Claim I. X ( t )  is continuous in the q.m. at t = t o ,  if and only if the 
covariance R ( r , ,  1 , )  is continuous at every t l  = t2 = to (diagonal point or 
elemen 1). 
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Note: In order to prove the above claim, we need .o verify the important 
relationship: 

- R(t + E ,  t )  -F R(r. t )  (2.20) 

The continuity in the q.m. is much weaker than the sample continuity. A 
classical counter example is the Poisson process: 

where X(r)  is a staircase type and, therefore. discontinuous; however, R(t ,  , t2.) 
= X min ( t , , t2 ) ,  for all I ,  and t 2 ,  is continuous. which implies X( t )  IS 
continuous in the q.m. even thoi:gh X(r )  is not contiriuous t s  a sample 
function. 

If X ( t )  satisfies: 

f ( t ) j  23 = 0 
X( t  t e )  - XCt) 

lim .[I E 

f -0 

We say x'(t) is the derivative of A'$) in the q.m. and we write: 

XO + e)  - X(r) q.m. 
-- X'(t)  E + 9  E 

We can verify that (use Eq. 2 20): 

c 

(2.21 I 



claim 2. The derivative f ( t )  of X ; )  exists in the qm. if and only if 

a2 R ( f  I .  1,  ) 

a t ,  a?, 

exists and is finite for t I  = t2  = t !set Fq. 2 . 2 2 )  because, as e ,  and c2 + O .  
Eq. (2.22) becomes the 5: ond partial for t 1  = t ,  = f .  Thus, the autocorrela- 
tion of f ( t )  is given by: 

By direct calculation, i t  can also be shown that: 

If X ( t )  is stationary, and utilizing r = t ,  - t 2 .  
we get: 

wdl ab Eqs. ( 2 . 2 4 )  ( 2 . 3 3 ) .  

From which: 



27ERG00Ic1TvANDsrocHAsTlc~RALS 
In order to obtain the complete statistics of a process, the ensemble of 

sampie functions is needed. Lowely speaking, a process is called ergodic if the 
complcte statistics can be determined from any of the sample functions in the 
ensemble. Thus, a sirigle member of thc ensemble is assuned to represent the 
entire ensemble. Before giving a basic defmition of ergodicity, the concept of 
stochastic integration is needed. Thus, we shall talk about the mchastic inte- 
@- 

Fur the p a t  majority of applications, we do not need the most general 
form of the stochastic integrals. Thus. we shall only consider two cases of 
intc.grals: Reimam integrals of the form: 

and Stieltjes integrds of the form: 

A, -=lb g(t)dX(t) 

(2.29) 

(2.30) 

where [u,b] is the dosed interval and is finite, f i t )  is a deterministic func- 
tim, and X(r)  is a random proct,s. For the sake of simplicit*?, assume EX(t) = 
0 = n:fr). Illus, 

Suppose I = [u, b ]  is finite, and let the points a l . a 2 . .  . . , am+, define a 
partition, that is: 

u = a ,  <a, . . .  < a m + ,  ~b 

Let S, and S, denote the sums corresponding to A I  and A,, respectively 



(2.32) 
,= I 

Since SI and Si are sumnations of random variables, S, and S2 are also 
random variables with E(;;,) = QS,) = 0 (because EX(t) = 0 by assumption 
for all t). 

Now as m + 00 and the maximum of (a,+, - a,) -* 0. the limits of S, and 
S, exist (in the quadratic mean), that is, 

when 

q m -  
A,  = lims, 

q m -  
A, = h S ,  

nr + 00 and max (a,+, - a) + 0 

(233) 

( 2 34) 

(2.35) 

Remark 6. From the above, we mean: 

lim E [  IA ,  - s, 121 = 0 

and 

whenever condition (2.35) is satisfied. 

Chim 3. I t  can be verified easily that if R ( f .  u )  is continuous over lo. hi X 
la, b )  , and if f i r )  is such that the Reimann integral: 



exists, then the integral A ,  exists in the quadratic mean (q.m.) and 

EIA,12  = W, andE(R,)=O (2.37) 

Remember that E(A , ) = 0 (this was shown above). 

C % h  4. A h ,  if R(t, u )  is of bounded variation (IR(t .  u) I has fmite 
number of maximums and minimums over [a. b ]  X [a b ]  ), and if At) is such 
that the Stieltjes ink&: 

exists, then A, exists and 

To prow (2.37) and (239). we consider another partition of [a b )  : 

u = u ,  <u,  ... <urn+, = b  

and we let S', and y2 represent the sums corresponding to (231)  and (232); 
then we can show (by utilizing the definitions) that: 

(2.40) 

where 

m + 00 and max (aj+, - a,) + 0 and mas (uj+,  - uj) + 0 (2.41 1 

Similarly, 

(2.42) 



Reum# 9. We have assmed that SI and S2 converge in the qm. It is 
easily shown that the limit in each case will be independent of the particular 
partition chosen. 

Rem~r& 8. If either SI or S2 converges as B -+ --oo and b -, -oo, then the 
limiting integrals are defied accordingiy. 

Renmrk9. SLnCe 

then, 

EIA,12 = E [ A , A ; ]  = E  

If we kt the “expected value” E operate on the integrand, we would get the 
result given by (2.40). However, we can only do this if the appropriate condi- 
tions are satisfied. 

Example 8 

Let g(t) = 1 and X(t )  be a continuous real process on In. b ]  ; define: 

Find the mean and the variance of q. I t  is easy to show that the conditions of 
claim 3 are satisfied (m(t) may not be zero, which was assumed for con- 
venience in claim 3). 
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Eq = E [[ X(r)  d j =J6 E(X(r)) dr =I m(r) dr (2.43) 

Now we need to calculate q q 2 ) ,  since u: = E(q2) - 9 q :  

Again, the conditions of claim (3) are satisfied; thus, 

Thus, the variance becomes: 

u2 = J6Jb [R(r ,u)  - m(r) m(u)] dr du 
P 

= J b J b  a t .  u )  dr lill 

Example 9 

In Example 8, let 

(2.44) 

and assume X ( t )  is stationary (wide sense); find u:. 
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sobrtien 

From Eq. (2.43). we get: 

T 
= m = constant 

-T -T 

From Eq. (2.44). we get: 

(2.45) 

Eqwtion (2.45) can be simplified much further. 

Before proceeding with the simplification. let us review some simple mathe- 
matics (coordinate transformation). Let g, and g, be continuous (real) func- 
tiom, such that: 

For example, Cg, , g 2 )  maps D' onto D. Then the following well known result 
is satisfied; 

(2.46) 
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For any continuous real function f c - ; ) .  d(x. y)/d(.v. z) is  the determinant of 
the Jacobian matrix: 

where the entries are continuous. 

Application of the Above 

by 45' and a scale change of @.) The J (determinant) is determined: 
Let f l  = f - u and t2 = f + u. (This corresponds 3 a rotation of the axes 

Thus, 

Hence, 

where f I  and 7 are dunmy variahles. 



Using this last result on Eq. (2.45) yields (dividing by 415): 

( 2.47) 

Equation (2.47) is true for the complex X(t )  as well; however, for the real 
case, Eq. (2.47) further reduces to: 

2.9 OERNmoN OF ERGowcfiv 
Let X ( r )  be a stationary process and assume that: 

T 
lirn ~ ( t )  dt 2T 
T-. 

exists in the q-m. We say X ( t )  is ergodic if: 

That is, 

From Example 9, we have: 

(2.48) 
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and utilizing Eq. (2.48) the variance of q is given by: 

(2.50) 

Thus, it is obvious that X(f) is ergodic in the quadratic mean if and only if 
(see the above equation) the following is satisfied: 

(2.51) 
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2.1 Sketch a few samples of the process X(r) given by: 

X(r) = A sin (wr + Q) 

(a) If A is a random variable uniformly distributed over [-l,l]. 

(b) If w is random and uniformly distributed over [O,"] . 
(c) If 8 is random and uniformly distributed over (0,2n). 

2.2 Obtain the mean and the variance of each process in Problem 2.1. 

2.3 Let the sample function process X(r) be given by: 

x(r)  = (I COS (oar +. e) 

Assume a is deterministic and 0 is a value of the random variable 8, 
where Q is uniformly distributed over (O,n/2] .  Find the mean, variance, 
and the autocorrelation function of X(r). 

2.4 Let the sample functions of a process X(r) be given by: 

x(r)  = COS (oar + e) 

where 8 is uniformly distributed over [0,2n]. Obtain the p.d.f. of the 
process, and comment on the stationarity of the process (in the w:de 
sense). 

2.5 Let Z(r) = X(r)  Y(r)  be real processes. Assume that X(r)  and V(r )  are 
independent stationary processes (wide sense); then: 

(a) Obtain RZ(7) = RX(7) R ,.(T). 

(b) If the processes P ( r )  = X(r)  - mx and Q ( r )  = Y(r) - m y  with the 
corresponding 

Rp(r)  = exp (-a1 71 ) 



and 

RQ(r) = exp (-61 rI ) 

where u and b are both positive, then obtain RZ(r). 

2.6 Let X(r) be a wide-sense stationary random process with no periodic 
components. Assume X(r) and X(r t r )  are uncorrelated as I rl be 'omes 
large. show: 

2.7 If X(f)  and Y(t) are independent random wide-sense stationary processes 
and Z(r) and W(r) are such that: 

Z(r) = X(r )  t Y(r); W(t) = 2X(r)  t Y(r) 

Then find RZ(r), R&). RZW(r) ,  and RWz(r).  

2.6 Consider the process at) = / ( f ) Y .  where / ( t )  is a deterministic complex 
function (non-random), and Y is a random variable. Assume that we have 
a constraint on X(z) such that X(r )  is of mean zero and is wide-sense 
stationary. Then perform the following: 

(a) Determine the restriction on /(I). 

(b) Obtain the most general f o r n  of / ( I )  that satisfies the requirement. 

2.9 A pro~ess Y(r) satisfies: 

f + Y = X(f) .  I > 0 

where Y(0) = 2, m ,  = I ,  and R ,  = I + exp (- 171 1, Find thc fnllowing: 

(a) m y .  

(b) R,,( t , ,  t 2 ) ,  for t ,  and t 2  > 0. 

(c) R y Y ( t , ,  t 2 ) ,  for t ,  and t 2  > 0. 

(d) Conment on the stationarity of R y .  
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2.10 Asumc CJT) of the process X(r) satisfies: 

Show that 

2.1 1 Given the processes X(rl arid N(r) such that 

X(r )  = b t N(r) 

where b is a constant. E(N) = 0. and N is stationary. show tliai if $ i s  
given via 

it will satisfy 

E(;) = b 

and 

variance of b = - 
-T 
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CHAPTER 3 
POWER SPECTRUM OF 

STATIONARY PROCESSES 

Before discussing the power spectrum, which is defmed for the wide-sense 
stationary, we need lo familiarize ourselves with some basic concepts and 
definitions. 

3.1 CLASSIFICATION OF SYSTEMS 
Heuristically speaking. a system refers to a modeling of a physica! phe- 

nomenon (which is idealized in some sense). We shall visualize a system via a 
black box which has many inputs and many outputs (vector input-output). 

I I 

The input-output is often indicated symbolically by: 

Y ( f )  = I. U ( t )  (3.1) 

where U t )  is a vector-valued input. Y ( f )  is a vectwvalued output. and I. is an 
"operator" relating the input to the output. The operator I. depends on the 
particular physical ... ddel. 
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DmWtion I 

conditions are satisfied: 
We say the system is linear if the operator L is linear, ;.e.. thc following 

( 3 . 2 )  

where a is any scalar. and 

for any inputs U, an3 U,. Equivalently. Eqs. (3.3) and (3.3) can be comb~ned 
into one equation: 

L(a u, + 0 u, ) = a L( u, t p I.( u, 1 (3.4) 

for any pair of scalars a and 0. 

In tne following exaniples 3ssunie the input. d n d  iiie outputs are one- 
dimensional. 

Example I 

Consider 

(1 

J t  
, l* ( t )  = i(/,. = ---/4(I) 

We knowl, = J/Jf and tlie c'onditi~)iis o f  linearity are satisfied. 

Example 2 

.I : 1 = i r 2 ( t  does not currespond to a  ine ear system since: 



Example 3 

Cansider the electric circuit given below. 

R 

Let v ( f )  be the input and i(r)  be the output. Then, the output is given by: 

(3 .9  I 
i(r) = - r(t) R 

It is easy to verify that the system is linear. 

Example 4 

Then. 
In the previous example change R to an inductor t and assume i(--) = 0. 

(3.6) 

and the system is also linear (left as an exercise). 

Example 5 

Consider a wstem given by: 

where a # 0 and b # 0 are scalars. The system is nonlinear! This is true 
because: 

‘Ihe system will bpcome h e a r  if b = 0. 
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Detlnitioa 2 

a fuoctian of the input at the same t h e .  
A system is d i e d  instantaneous if its output at any given tune r is at most 

Definition 3 

A system is d e d  dynamic if it is not instantantous. Example 3 is instan- 
taneous and Example 4 is dynamic. 

tkfinition 4 

A system, whase output at time r is completely determined from the input 
in the closed interval If - T, r ] .  where T 2 0. is said to  have a memory T. 
’ihus, if T+O, the system is dynamic, otherwise it is instantaneous. In 
Example 4, the memory is inilnite. 

De6mtiw 5 

A system is realizable or causal if its output f i r )  does n” depend on the 
future value of the input. Thus. y ( r )  can be determined f r m  the past (and 
the present) inl’ormation of uCX) (Le., X Q r and not on X > I). 

lk6nidon 6 

A dynamic system is said to be lumped if it can be characterized by a set 
of differential equations for the continuous case (and difference equations for 
the discrete case). 

In the classical characterization of a linear system, any lumped linear sys- 
tem (asume scalar inputs ana outputs) can be represented by: 

(3.7) 

where h(f, r )  = L a(r - r )  = response to 2 unit impulse function applied at 
time r. 

If the linear system is causal. t!ien: 

h( t .7 )  = 0. for r > t 
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Otherwise, y(r) would depend on U(r) for r > t (future value). Thus, it would 
not be realitable. Hence, Eq. (3.7) for causal systems can be written as: 

Definition 7 

same time translation in the output. That is, if 
A system is timeinvariant if the time translation of the input causes the 

then u(r - A) would correspond to  y ( r  - A). 

It is ew to verify in a linear timeinvariant system that the impulse 
response h(r, r )  = L(6(r - r)) becomes: 

bfr. T )  = L 6(t - r )  = h(r - r )  (3.10) 

where b and h are two different functions. 

Thus, the linear time-invariant system is entirely specified by a response to 
a single unit impulse, which can be applied at any given time 1. For the sake 
of simplicity, we shall assume the time r = 0. Hence, 

h(r)  = I. u(t) (3.1 I )  

For a time-invariant linear system given by Eq. (3.7). one can write: 

y(r) =I: h(r - r )  U(T)  dr (3.12) 

Equation (3.12) is of a well known form, called the “convolution integral,” 
and it is denoted in the literature by h u. We are going to talk more about 
h * u in later sections. 

Remurk I. Since the integral given by Eq. (3.12) is the limit of a summa- 
tion (definition of Reimann integral). we can think of the output y ( t )  (signal) 
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to be d v e d  into unit impulses. Far example, coasider a b i t e  interval 
[ - T , q  and finite unit of pulses (step) with width Ar Occueringat ram, 
for b = O,iI,i2,. . . , iA' = T/Ar (see sketch). 

The 

where P,Jt - k&) is a unit pulse with wid& Ar. The height of the unit 
pulse is I/& to  make the pulse area equal to  one. &+O, W4- ,  and 
T 4 . s  then, if the limit of the above summation exists, it must be equal to 
y(r)  g k m  via Eq. (3.12). i.e., 

Discossion 

Physical systems are characterized by models consisting of idealized ele- 
ments. choosing an appropriate model which characterizes ail features of the 
physical system is very important and also very difficult. In g~ 1. a model 
of the physical system may be e x p e  mathematicaU: intego- 
differential equations and is generally nonlinear. The complete I. tment of 
nonlinear systems is extremely I'ifficult; therefore, we try to do the next best 
thing: approximate the nonlinear system wit!! a linear system. 

The classical method of describing a linear system is by the impulse 
rc ponse method. Even though the solution of the linear model is known, its 
treatment in the time domain for the time-varying case is not simple. If the 
l i nm model is time-invariant, we can use a transformation (such as Laplace or 
Fourier) to convert the complicated integrodifferential equations into simple 
algebraic equations (frequency domain). It is of extreme importance to 
emphasize that the transforms can be used to great advantage only in the 
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timeinvariant linear systems. In the nonlinear and timevarying cases the tmns- 
forms cannot be utilized to advantage. 

It is very easy to imagine a situation whem we transmit a random process 
X(f)  (sigaal) through 3 linear 01 a nonlinear system. H-r. if X(f) is trans- 
mitted th;o@ a time-invariant Linear system, we shall use Fourier transforms 
to simp@ the calculations. "he Fourier transform is also used for the decom- 
pasition of si@ pa. which wiU be defined in the following sections. 

Before dewloping the concept of the power spectrum of a stationary pn ,  
cess, let us give some intuitive digcusgion of Fourier transforms and series. lf 
the reader is noi familiar with these cmcepts, he is advised to miew Appen- 
dices C and D. In this section, however, a datively non-riprous approach is 
adopted for intuitive appeal only. 

Imt us start by asking ourselves the following question: I s  there an input 
si@ which will pess through a time-invariant system without changing shape? 
The answer is ,yes** and is an exponential function exp e-), where X is, in 
wed, a complex coslstant. If we choose a special form of exp (hr), namely. 
exp (jut), then the output y(r) would be proportional to the input, i.e.,y(f) 
= mu) exp (ior), where mu) is the so-called **?;.stem function." since the 
characterization of the exponential functions of the general form exp Q (or 
exp (ior)) is very simple, it is desired to resolve any general hurction f ( r )  in 
terms of the exponentials whenever possible. Obviously, one such case is the 
representation of a periodic signal f ( r )  in terms of exp cut) (Fourier series). 

A periodic signal f ( r )  (not yet a random process) with a period T under a 
set of conditions (Dirichlet, see Appendix C) may be resolved into a series of 
complex functions over I- TJ2, T / 2 ) .  The resolution is given by: 

where wo = 2n/T, I E [- T/Z.TI'?], and the values of Cn are given by: 

(3.13) 

(3.14) 



&!call in 4. (3.14) that C, is, in general, complex and can be written as: 

C,, = lCnl exp (itl,,) (3.15) 

#here C, and 9, are functians of w = nuo- 

The essential information about the harmonics in a periodic signal consists 
of tke magnitudes. pbase angles. and frequencies. It is easy to see that all the 
information abaut f ( t )  is incorporated in C,, and we = 2rlT. since once 
these quantities are known, m is f ( t ) -  The real amplitudes IC,l md the 
phases 8, can be -resented graphically as a function of w = nuo. I =  
O,i1,&2. .... The collection of d e  graphs is called the frequency spectra 
(discrete). Typical amplitude and phase spectra a~ shown in Fig. 1. It is easily 
verified that ICml is an even fuaction of w, and 8,, ism odd function of w 
(kft as an exercise). The wader may verify for himself that, for real signals f ( r ) ,  

T IC,' 
t *a 

321 TheFourierTranstonn 

Now suppose that the function f ( t )  is defmed over the infinite intend 
(-" =+=) d1.d that it is no longer ~*eriodic. Then it is still possible, under certain 
conditions, to resolve the nonprriodic functiori into complex exponential 
functions of the form exp (iwr). The intuitive argument is to reduce the 
spacing wo between the components of a periodic signal. Denote the spacing 
by A a  = wo = 2n/T (radians per second). We shall continue to consider I C, I 
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as a discrete function of noo. Since (see Eq. 3.14) IC,l + 0 as T -+ 00. we 
shall define a new variable qjto,) = WAw):  

As T - m and Aw + 0, nAw approaches a continuous variable o and: 

(3.16) 

and / ( t )  can be written as: 

As Aw -B 0, nAw approaches a continuou variable w, such that 

(3.17) 

Equations (3.16) and (3.171 are called tha Fourier transform pair. Equation 
(3.16) is, in general, a complex function of w. As an exercise the reader can 
show that for real functions / ( r ) :  

F*(") = 0-a) (3.18) 

Also, the reader will find it instructive to verify t5e transform pairs given in the 
appendix on Fourier transforms. 

If we use f = o / 2 n ,  and let P(f) = C ( M ) ,  then 

(3.19) 



and 

(3.20) 

Equations (3.19) and (3.20) are also called the Fourier transform pair. 

3.3 POWERSPECTRA 
We know that if C(w) cowsponding to the nonperiodic function / ( I )  

exists. then we can verify (see Appendix C) that: 

holds (Parseval’s relation for Fourier transform). 

IA f(rX for example. represent the voltage across a resistance of I o5m. 
Then the instantaneous power p(r)  defined by p ( f )  = v ( f )  i(r), where v ( t )  is 
the voltage and i (r)  is the current through the resistance. Thus, the dissipated 
energy in the resistance (which i s  the integral of p(r ) )  is p e n  by: 

The werage power PA, is defined by: 

(3.24) 



It is poggible that total energy be h f h t e  and the average power to be 
from Eq. (3.23) represents the density spectrum, finite. Note that I G(o)l 

except for the constant 1/2n. 

Now let us consider X(r) to be a real stationary random process. Define 
X,(r) such that 

(3.25) 

and let its Fourier be denoted by x,(o), i.e.. 

X,(w) =I: X,(r) exp ( - jar )  dr = X(r) exp ( - jor)  dr 1: 
(3.26) 

We can see that, as T + 0, the signal XJr) + X(r). Utilizing Eq. (3.24). the 
average power of X(r) for t E [-T,TJ is given by: 

where from Eq. (3.23), I j < + ~ - ) ! *  &T) represents the power spar& densiry. 
However, the power spec- rur~ .'!,.--! .:f X(r) is defined as: 

Now S(w). by utilizing Eqs. (3.26) and (3.17), becomes: 

(3.27) 
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lhe above equation can also be written as: 

where, from Example 9 of Chapter 2, we get: 

(3.28) 

Thus. for a stationary process, S(u)  is the Fourier transform of R,(r): 

For a real process X(r). RX( r )  = RX(-r) .  Eq. (3.29) becomes: 

= LI:  S(W) cos WT dw 2n 

(3.29) 

(3.30) 



Def~t ion 8 

plex) is denoted by S(o) and i s  given 5y: 
The power spectrum of any stationary random process X(r)  (real or com- 

where R(T) is related to S(o) by Eq. (3.29) for the gnerai complex case, 
where Eq. (3.30) corresponds to the real case. 

3.3.1 Examples 
Before getting involved with the examples, a method of cdculation for the 

bilateral Laplace transform is discussed. Assume the bilateral Laplace trans- 
form F,(s) of f ( t )  exists in some region, say, far u, < Re s < u2. Then, 

wheregis the one-sided Laplace transform. 

Example 6 
1 Find F J s )  of / ( t )  = 7 exp (- I r l  ). - 
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Solution 

For t > 0, 

1 / ( c )  = -exp <- t )  2 

Hence, 

m(t)] = F ( s )  = s$j , for Re s < - 1 

Now, for t < 0, 

which implies that: 

= - -  I ”  ,for R e s  > I .  
-5 .t I 

and the region of convergence is - I  < Re s < 1 

Remark 2. The Fourier transform &(w) of f ( t )  is obtained by replacing s 
by jw. Hence, .$(a) = I I (  1 + w2 ). ~ 

Example 7 

Given :he stochastic differcnti.. equation: 



n l I G I G  A\UJ - v auu c [u(rytzjl  = b ( f  - ?), the solution of x(:) is given by 

x ( f )  = x(0) +l' exp ( - ( t  - r)] u(A) dX 

and 
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To obtain S,(CJ), we can either use Example 6 or the direct definition of 
the Fourier transform. Thus, 

Example 8 

Suppoje S x ( o )  of 9 process X( f )  is given by : 

1 
S,(O) = - 

w2 + I 

Find R x ( r )  by the Theory of Residues. 

Before completink this example, let us give an infor:iid discussion of the 
inversion fornda. 

Let f ( f )  be a given fu;.ction such that its Fourier transform B(oj exists. 
Then, for a fixed positive u > 0. the Fourier trmform of exp ( - o f )  f ( f )  also 
exists and is given by: 



b o t e  the integral as f l u  + jc !. Thus, f ( r )  exp (-or) is given by: 

W.ipIymg both sizes by exp (ur) ('I is constant). we e:: 

%*dues of FJs) exp (st) at 
singularities to left of line 

for r 2 0 

residues of FJs) cxp (u) at 
singutantics to right of line 
chosen. f tM I < 0 

The equivalent bdated tramtorm correspondire to S.y(w) is denoted by 
S&) and is obtained from Sx(o) by si~bs~itutinp G) = si; 

Kow appiying the inversion formuta to Exampie 8: 
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SJs) exp (sr) dr, where - I < c < I R(r! = - 

. for r > 0 

residues of S (s) exp (sr) at 
for r < 0 pok  of .fjB(sy. 

Example 9 

If s(o) is 3 p w e r  spcctrum of a given process. show that c12S/dd i. lot 
3 power spcctruin. 

Sdntion 



which implies: 

Now. if dZStw)/dw2 is a power spectrum, we must have j -r2R(t)]  as an 
autc#-orrelatitn function. Let at) = -t2R(r). If C(r) is an atitchorrelation. then 
we would always have: 

I C(r)l Q CtO), for all t 

However. C(0) = 0 and 

0 = G<r) Q C(0) 

cannot be always satisfied. 

Example IO 
X( f )  = cos (oaf + e). 8 E lO.2nj. is unifmnly distributed. Find Sx(w).  

Solution 

From F.xample 6. Chapter 2: 

1 
2 R(r )=EX(f )X( f  + r)=-cosuo7 

I 
4 

= - [b(f - fob + r3(f + fob: 3 r  fo = W” 
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Example I 1  

by: 
In Example 8 of Chapter 2, the autocorrelation function R(T) vas given 

7 sin' (:) 
="(I - c o s w ) = ~  

2 (3 w 

3.4 MAJORRESULT 
In what fdlows. we shall show that a function R ( r )  which has a Fourier 

transform S(w) is an autocorrelation functiim of a staticmary r a n d m  process 
X ( f )  if and bnly if S(o) > O  for all o, where X ( * )  is continuous in the 
quadratic mean (qm.). In order to prove this major result. we need to prove 
some important results given by Theorems I and 2. which will appear in the 
sequel. We shall assume X i . )  is continuous in the q.m. unless specified othcr- 
wise. 
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lbcarrm I (Bochoer's-) 

The humction R(T) is an autocorrelation function of a stationary process 
at) if and only if R(i)  is nonnegative d e f ~ t e .  

We have already shown that if R(i)  is an autocorrelation function, then it 
is nonnegative aefiite, since for any collections of t,, t2..  . . , tn (time) and 
annplex parameters a l ,a2 , .  . ..a,,: 

2 f: R(tj - tk )  ajai =I$ X(t> ajl 3 0 (3.31) 
i.k= I 

H-r, the converse is more complicated and wiU not be proven here. (For 
the proof, see Cnedenka of h h M p ,  Chelsea publication, 1962.) 

Theaem2 

A function R(T) with the corresponding S(w) is nonnegative defmite (auto- 
conelation) if arid only if it ca . be repmented by: 

where S(u) is never negative (Le., S(u) 2 0, for all a). 

The proof is relatively complicated r i d  will be eliminated here; for a proof 
see the same reference shown in The0ret.i 1. 

As a special case of the Fourier transform pair R(r) and S(o), we have: 

and 

(3.32) 

(3.33) 
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and R(0) is the average power by definition. i.e., 

lkenitioll9 

is called a whitmaise process. If S(w) = Wo = constant, M obtain: 
A stationary process X ( r )  whose powr spectrum go) is constant for all w 

(3.34) 

Hence NO), which is the average power, becomes infiriite at r = 0. Thus, we 
conclude that the white noise process is a nlathcmatical function that is very 
useful in practical applications For example, it is convenient t o  utilize white 
noise as an approximation to an actual process d o t e  power spectrum is flat 
(constant) over a frc-pcncy band. 

In application problem such as thase that occur in contrd and communi- 
cation, we are faced with physical noise sources which are added to the signal 
as a lump sum. The power spectrum of the overall n o k  is essentially flat up 
to frequencies much higher than thuse that are significant for the signal and 
the system. 

Very often we confront I situation where we pass a stationary prcxcss X(r )  
through a time-invariant sy: em, and are interested in determining the output 
(along with its statistics). 

Consider the (bounded) sample function X(r) from the ensemble { x ( r ) }  
which is applied to a time-invariant system with iinpulse response h ( r )  (see 
sketch) and the output Vr). 

We know Y(r) can be writteii as: 

(3.35) 



Nbw let us f i d  R,,(r). 

From Eq. (3.35). we have: 

Thus, R(s) = E[ V(r)  Y(r + r)]  can be written as: 

(3.36) 

Rewriting Eq. (3.36) and taking the expectation inside yields: 

R y ( p )  = Ely ( r )N  + .r)l = h(X) h(u) E[X(r - A) X(r + r - u)]  dx du 

= h(-t )  * ht?) * KJr )  (3.37) 

Now if Sy(w),  H(o), and Sx(w) exist, we can apply the Fourier transform to 
Eq. (3.37) to get: 

which is an important relationship yielding Sy(w) in terms df SX(u') and the 
system transfer function H(w). 

Remurk 3. From Eq. (3.37) it is obvious that .'b(t) y(t + 7)) is a fLnc 
tion of r alone. and also due to stationarity of X(r) ,  €.Y(f)= m = constant, 
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which implies &Y(r) is also constant (see Eq. 3.35). Hence. Y(r) is  ststionary 
(wide sense). 

Remark 4. 

(3.39) 

Remark 5. The results are also true for the complex stochastic processes. 

3.6 INPUT-OUTPUT OF MULTIPLE TERMINALS 
Suppose we have two time-invariant systems characterized by their impulse 

responses /I,(*) and h, ( * ) ,  respectively (see sketch): 

where X , ( f )  and X , ( f )  are sample functions from { X ( t ) } .  whish 3s before is 
assumed to be a stationary ensemble. 

1x1 us cdcuiate R Y ,  ~ ~ ( 7 ) .  As befere Y , ( r )  and Y , ( r )  can he written as: 

(3.41) 



and a simple calculation (similar to the previous case) of R y I y 2 ( r )  would 
lead to: 

where R X I X 2 ( r )  is the cross-correlation of X , ( r )  and X,(t). Hence, once 
again: 

Thus, assuming that the appropriate Fourier transforms exist, we obtain: 

which is a very general result, relating the input spectrum of R x I X 2 ( 7 )  to the 
output spectrum S y I  y,(w). 

Note that as a special case of Eq. (3.44), i t  we let XI = X2 and h ,  = h, 
(which implies Y ,  = Y 2 ) ,  we obtain Eq. (3.38). Note that Eq. (3.44) is also 
true for complex processes. 

Remurk 6. Th reader may verify for himself that if X , ( t )  and X , ( f )  are 
uncorrelatd. s o  2,: Y l ( r )  and Y2i.f). 

Discusion 

In applications. / l , (w \  and / l , ( w )  very often haw liiiite bandwidths. i.e.. 
H,(c,J) = 0 fo r  SOR:C a,, such ihat I wI > L,, and. similarly. / { , ( a )  = 0 fo r  
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some o1 such that lo1 > ol. It is obvious that if Hl(w) and H,(o) have 
nonovedapping spectra, then 

H1(-w) H2(o) = 0 

which wodd yield: 

or 

In that case, the processes Yl(f) and Y,(r) would be orthogonal. 

A very important consequence of the above is that if X ( t )  is translnitted 
through an ideal filter, Le., 

A,, for Io1 < a,, 

0, otherwise 

IH(w)l = 

then the output signal Y(r)  and the signal suppressed by the filter would be 
orthogonal. That IS, if X(r )  has a frequency conten: beyord w,,, it  is going to 
be suppressed by H(o) and the suppressed portion is orthogonal to Y(r). 

' 

Example I2 

A white-noise voltage source X ( t )  with power spectrum Sx(w) KO is 
applied to  an RLC network (see sketch). Assuming tbit the system (circuit) is 
at rest at t = G (co transients), determine Sy(w). 



Solution 

We know that: 

Him) can be calculated from the above as follows: 

3.7 SAMPLING THEOREM 
The sampling theorem (due to C. E. Shannon') is very important and has 

produced some unexpected rewlts. The utilization of this theorem is prevalent 
in control and communication theory. It iiiust be emphasized that the sam- 
pling theorem, whether we are dealing with deterministic or stochastic signals. 
4 1  mly hold for hurid-limird sigiiuls, that is, signals whose Fourier trans- 
fnrna sre identically zero beyond a finite band of frequencies. In order to 
develop this concept, we shiill first deal with a signal X ( f ) ,  which is deter- 
ministic. TL % more precise, we shall state the ,.ieorem. 

lheorem 3 

beyond I o I > oc rad/s (see sketch): 
Given a deterministic siptlal X ( r )  whose Fourier transform .n*(o) is zero 

.&lo) = 0. for ail Io1 > wc 

- 
*C. E. Shannon, "Communication in Resencc of Noise," hoc. IRE. J J I I .  1947. 
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"hen X ( t )  can be compieteiy aid uniquely recovered by its values sampled at 
uniform intervals of T = n/wc seconds (or smaller), a d  i: is given by: 

(3.45) 

Roof 

the simplest proof. 
There are several ways of proving this important theorem, but we shall dve 

From the inverse Fourier transform, we obtain: 

Now, w u i  i e  that -21~) is a part of a periodic functioii X + ( w )  (see sketch), 
such that : 

i i 
I 

C 
-W 

I .a 
wC 
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Hence, for Io1 < wc (see Appendix D). 

where 

and bn is given by. 

(3.47) 

(3.48) 

If we suhtitute t = - nT in Eq. (3.46), we obtain: 

Now. utilizing the definitic:n of  bn fiom Eq.  (3.48). we get from the above 
equation: 

1 
T X(- i iT )  = -bn 

or. cqui:'alently. 



Usiig ilic above in Eq. (3.47) yields: 

Now, if we substitute Eq. (3.49) into Eq. (3.4h: we obtain: 

(3.49) 

which is exactlv the result we are after. 

Remark 7. If we substitute T = n!wc. then 

Remark 8. ;he function 

is an "intcrpolatioti functioti" wliidi is nilrltipiicd by .Y(trT) a i d  IS suiiiii;erl 
all I ;  t r )  yield Mr). 

Now ur' shall disco? the c w  ~ I i c r c  X ( t )  is :I sioclidstic proc.:ss. Wc will 
show that the rcsult given by Eq. (3.5 I )  h(.!ds fur tlic si~~L!iastii case i n  tlic 
quadratic riiw (q. 11.1. That is. 



X(r)  = X(r  + T )  = X(r +rT) 

'ihen it is very essy to verify that R J t )  is also p e r i d ,  since 

4 

(3.53) 
el 



Now, i f  we use the Fourier transform on R&). we get: 

(3.56) 



(3.58) 

.. sin (uEr - n r )  
= O  (3.59) (ac' - mz) 

= R ( r -  run- R(nT- mT) 
e=-.. 

where it is left to the reader ta verify that: 

sin (ac' - nr) 
R(r - mT) = R(nT- mT)  ___ 

a 

n=-- (ac' - nr) 

which is ohawn by substituting f - mT far r m Eq. (3.57). 

Now, utiliing the identity 



(*e Ihb identity is 
quationL we now pr: 

prwn by c%anging t - mT tu t in the prrcrding 

lhw. utilizing Eqs. (3.50) and (3.60). it  is easy to show that: 



( 5 )  ksumt R,(r) is no( periodic. then 

lim R*(r) = lrnl* Irl -b- 

where m = E [ X ]  and if X(r )  and X(r t r )  are uncorrelated as I rl -b oo 
Thus, if E[X(r)] = 0. then 

(7) R ( - )  is an autocorrelation function iff it is ncnnegative definite. 

(8) R( -) is an autocorrelation functiun ill’ its Fourier tiansfmi1 S(w) 2 0. for 
all w. 

(9) If  X ( r )  is the input of a timeinvariant system with the transfer func- 
tion H(w). then the power spectrum of the output Y(r) is given by: 

3.9 DEAL LOW-PASS SIGNALS 
We shall define X ( f )  to be an ideal low-pass process if SX(o) is given by: 

for I w l  < wc 

I 0. ctlienvise 

S * W  = 

Invoking the inverse Fourier transform. one obtains: 

OcT 
- - - 0  
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how let us show R,(T) as T -* 0 (we shall denote R,(r). r +O. as R,(O)). 
l h i g  L'Hospital's rule on the ab. ve equation, He get: 

d -(sin O ~ T )  
dT 

J 

sin O ~ T  

KO 
A', linl ---__ = lini R,(r) = lini 

1-0 1-0 r-0 ( ~ T ( O ~ T )  

Hence, we can write: 

sin W ~ T  
R( r )  = R(0)  

W C r  

(3.61) 

From the above equation it is easy to  verify that R(r17') = 0 for a11 I I  # 0. We 
can also show that X(nn processes are mutually ortliogonal. This is true 
since 

E[X(tr7') X(tnT)] = Rx[( i i  - m)T] = 0. for all ti f ni 

Now we shall summarize a significant result via the following heorem: 

Theorem 4 

A bmr&/intifed process X ( f )  is low pass iff X(1t7') are mutually orthogonal. 

Ptoof 

We have shown that if X(-) is low-pass (characterized by Eq. 3.61). then 
X('(nT) are mutually orthogonal. If the processes X(nT)  are mutually ortlio- 
gonal, all we need to show is Eq. (3.61). Now Rx(rtT) by definition is given 
by. 

because of orthogonality. Invoking the sampling theorem (see Eq. 3.57). we 
get: 

sin w z sin or? 
= . . . t 0 t 0 t . . . R ( 0 )  t 0 + 0 . . . = R ( 0 )  

WrT *c7 
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3.10 REPRES€NTATION OF BANPPASS PROCESSES 
A signal X(t )  whose power spectrum is defmed only over a band 

Wo - WE < lo1 < wo + W, 

and is zero outside the band (see sketch) is called a 6uttd-puss process. Note 
that the power spectrum SX(w) is defined only for stationary processes. We 
observe that the band-pass corresponding to the stationary process X(r) is 2oC 
and is centered at w = o0. 

Sx(wl 

w h d l d  

In what follows we shall show that a band-pass process consists of two 
components, given by: 

X ( r )  = X , ( r )  cos wt + X , ( f )  sin wt (3.62) 

where X , ( f )  and X , ( f )  are stationary (wide sense). and S x , ( w )  = S.y2(w). In 
addition, these power spectrums are shown to be related to S X ( w )  by the 
equation: 

S , ( o + w o ) + S x ( w -  wo). for I w l  <or 

0. . for I wI > ar 

SA. (a) = s, (W) = 
I 2 
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We can also show that SxIx2(w) and Sx2xI(w) are related by: 

i [Sx(o - 0,) - Sx(w + w,)] ,  for 1 wl < wc i 
for I w l  > oc 

(3.64) 

Note that SxIx2(w) is  not necessarily nonnegative because RxIx2(7 )  is not 
necessarily nonnegative definite. Furthermore, as a consequence of Eq. (3.51) 
it can be shown that: 

(3.65) 

Summarizing the above via a theorem is now appropriate. 

Theorem 5 

X(r) is a band-pass process (implies X(t )  is stationary) with the correspond- 
ing S x ( o )  given above (also see accompaiiying sketch) iff X(t)  can be 
described in Eq. (3.62) and Eqs. (3.63) and (3.64) are satisfied. 

Roof 

Let Z(r) be a random variable such that Sz(w) = 4 Sx(w) and be zero for 
w < 0. Le., 

S Z ( W )  = 4 S x ( o )  I(w) (3.66) 

where I ( . )  denotes thc unit step. From Eq. (3.66), we can model Z(r) as the 
output of a linear system, with the input X ( t )  and the transfer function 
HI (a) given by: 

H&w) = 2 I ( 0 )  (3.67) 

I t  is easy to observe that: 

2 I ( w ) = I + s g n w  
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Thus. Z(r) can be modeled by an alternate approach. i.e., 

whcrr. f(r) is defined by using X ( t )  as the input of a linear system with a 
corirsponding transfer function H ( o )  given by: 

(3.69) 1 H(w) = - j  sgn w ,  i.e.. h(r) = - nt 

(3.70) 

We tlcline i ( r )  given by Eq. (3.70) as the Hilbert transform of X U ) .  The 
process Z ( t )  is called the analytic signal associated with X(f) .  I t  is useiul to 
ohbrric that i f  X ( r )  is the input with the transfer function H(w) = -jsgn w. 
11icii [lie output is because: 

F r o i l l  Eq. (3.71), we can verify IH(o)l * = I and 

(3.71) 

(3.72) 



v 
Let X denote the output of a system with the input ?(r)  and the transfer 
function H(o) = -1 sgn o; then it is easy to verify that: 

I ( r )  = - X ( r )  (3.73) 

i 
Hence, for the processes X(r), &), and X(r), their behavior can be sum- 
marized as: 

Now, utilizing the facts that: 

sX,-(o) = sXx(o)  H*(u) = i sgn w s X h )  (3.74) 

(3.75) 

and 
S- (w) = Sxx H(w) = - j  sgn w Sx(w) x x  

then 

and 

RX?(T) = - R z x W  

Now we shall consider the process Z(r) exp (-jwot), and let 

Z(r) exp (-joot) = XI([) - j X , ( t )  

That is. 

(3.76) 

(3.77) 

(3.78) 

(3.79) 
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from which we can obtain: 

= Xl(O cos o,r + X,(r )  sin w0r (3.81) 

Y 

X(r)  = Xl(r) si11 w0r - X ,  COS a0t (3.8'7) 

From Eqs. (3.79) and (3.80). we obtain: 

1 E(X, ( t  + T )  X , ( t ) ]  =? {(R,(t) + R ~ ( T ) )  cos a0f 

+ [RX$r! - R z X ( r ) ]  sin w0r 

+ [Rx( r )  - R z ( r ) ]  cos oo (3 t r )  

+ IRX$r )  t R . g X ( ~ ) ]  sin o0(3 t r ) }  

Now if we use Eqs.  (3.72) and (3.77) in t!ie above. we obtain' 

R, ( r )  = R, cos o0r  t R x z ( ; )  (3.83) 
I 

which is stationary. and, similarly, 

R, ( r )  = R, cos wor t R x z ( ? )  sin mor (3.84) 
2 

which implies: 

R, I (7) = R, 2 ( T )  
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Now, Sx,(w) can be obtained from (3.83) by: 

Sx (w)  = - 1 (S (w + 0,) + SxCw - a,)] 
2 x  I 

1 
2 x  +- (S (0 + 0,) sgn (d i- 0,) - Sx(w - 0,) syl (w - a,)] 

(3.86) 

Let Sq(o)  denote Sx(o)  where we translate Sx(o)  from its center at wo to 
the zero frequency. I t  can be verified that: 

Sx(O - wo)  = Sq(-oo) + Sq(w - 20,) (3.88) 

substituting (3.87) and (3.88) into (3.86) yields: 

s (a) = Sq(w) + S,(-w) (3.89) 
XI 

and, further, i t  can l,e shown that: 

(3.90) 

where W is width of the band-pass. 

From Eq. (3.85), we also have: 



Hence, we have shown (see Eq. 3.90) that X , ( r )  and X,(r )  are low-pass pro- 
cesses. 

To find RxIx2 (7 ) .  which is equal to - R x ~ x , ( T ) ,  we use Eqs. (3.79) and 
(3.80) to obtain: 

and 

j [Sx(o  - wo; - Sx(w t oo)], I &)I < W 

0,  101 > W  
;t 

(3.91) 

It is easy to verify that: 

because SxI(o) = Sx2(w).  Similarly. i t  is easy to verify that: 

The representation given by (3.81 and (3.82) of X ( t )  and : ( r )  is known as 
the quadrature component representations. 
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(c) If R,(r) = m i .  fmd the mea and the variance of Y(t). 

(d) Obtain !he varhce of Y(f) and comment on your result as I P I  4 00. 

3.2 Let Y(f) be a process giwn by: 

Y(r)=X(t t I ) -  X(f - I )  

where X(f) is a zero mean stationary random variable. %ow that: 

3.3 Determine the correlation function of the white noise S(o) given by: 

CN, w, < I w l  <a2 

0, otherwise 
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3.5 Detenadm the combtion fuoetion of the proms at) with its power 
spectrum given by: 

3.6 In plowear 29.  &t&o SX(0) (Ilte S+). 

3.7 Tl!e iaput at) to a linear time-inwimt system has the cocreletion func- 
tion RX(') = a(?). Assume the output is Y(r). Thepl find R,(t) and 
RxY(t )  as well as their conesgondiog power spectrums, given: 

(a) Yt)= 1, given 0 < t < Taod m o  otherwise. 

@) Yt) - t exp (-a), t > 0. 



Hewisliadly speaking, stochastic estimation is the operation ofaaPignisea 
value to BR rnknawn pammetf?l based on contaminated (noiqr) obgervations 
or mvolviq some function of the parameter. The noise con- 
taminating the uacontaminated signal is assumed to have known statistical 
praperties. The assigned value is called an estimate and the system or fmc- 
tions yielding the estimate is called the estimator. In many applications it is 
meanineful to assign a cost to an estimate representing a quantitative measure 
of how "gooS" an estimate is. This cost fimb&m should be a function of 
estimation errors, IR., the difference between the true value and the estimated 
value. An optimal estimate is a function of reasid observations (measme- 
ments) which is chosen to mbhuze the expected value of the cost function. 
An estimator yielding such an optimal estimate is called a Bayes estimator. A 
basic feature of the Bayes estimator is that it requires a howledge of an u 
priori probability density function. 

The present-day theories of estimation m the time domain, with few 
exceptions, owe their creation to Wiener and Kolmogmv. They basically 
considered the problem of "optimal" separation of a signal s(r) which was 
contaminated by additive noise n(f). We denote the contaminated signal Y(f )  
and call it observation, in., 

U ( f )  = S( f )  + n(r) 

We shall use the same notation for the signal whether it is a process or 
ensemble throughout this chapter. 

907 



Wiener studied the arntinuowime pooMems and ssswned that 9(f) and 
~ r )  were typical numbers drawn frorn easslaMes of tkase functions which 
were widc-sense statioRary with known ftst  two moments. In addition, he 
asumed the avaUaUty of a semi-infinite obsenation and sokd the problem 
of linear least quare estimation. reducing it to  the psoWemotsolviogavery 

optimal dution by bieaer's method would tenninate with an integral equh 
tion whss d u t i o a  would be needed to 0pti.ndly sepamte dt )  from the 
ndse. 

diffirult integral equatios tbe so-cded wiener Hopf quation." m t  is, the 

Even if one is arillhrg to accept phys idy  that the signal and noise be 
statioaey and fhe observation be given over a semi-infdte interval, there 
lemins a major problem: colnputation of optimal ~uriono which utilizes the 
W=+f in- eqUJtion," where its solution with the exception of 
some ademic probltars is extremdy cumplicated a i d  awnputationally infar 
sibie. 'iBt S P t i g U c a l  Zmnnptm - I arc ab0 very stringeot, which Llthef limits 
tk applicablfity to  many practical proMems such as thaae in orbital nredran- 
b, space tracking, and rorrntkss others. 

Kalman d &ry revived estimation theory. They provided an alternative 
method t o  that of Wiener by assuming the avaihbaity of the obetrmtion OWI 

a finite m t e d  and not limiting themdves t o  stationary procasea Kalman 
and Bucy c m s i d e d  the special class of processes which could be generated 
by a white noise forcing function serving as the input to a furite dimensional 
dynamic system (explained in the following sections). They assumed complete 
I<nowledgc about the model m order to avoid certain very d i f f i t  problems. 

The primary interest m Kahnan's estimation technique is in practical appli- 
cations. We shan first dissuss some basic results of mean-square estimation 
(quadratic mean) via the classical approach as well as some basic nsulo of 
mean square estimation via Kdmm-Bucy Itering. Tht latter involves the du- 
tion of the so-called %ate estimation problems" d a t e d  with fmite- 
dimensional h e a r  dynamic systems operating m a stochastic environment. A 
discussion of characterization of linear systems via the state variable approach 
will be carried out later in the chapter. 

Physical systems arc normally characterized by models consisting of ideal- 
ized el en... its ~hidi can be defined mathematically. Choosing an appropriate 
model which characterizes aU the feattim of the physical system is very 
important and generally very diffcult. For example, if an unnecessarily com- 
plicated model is used, it may be impossible to analyze the model. On the 
other hand, if an extremcl\* Pimple model is utilized, the results obtained by it 
may not bc a realistic approximation to the physical phenomenon, Generally 
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speaking, a model of the physical system may be mathematically expressed via 
intepdifirenlirrl quark' L Although in red life very few systems are linear, 
they can Onen be adequat.4y approxinreted by bear models over an operat- 
5 ran* of intern t. Rw treatment of a nonlinear system is e x t d y  dif- 
ficult; therefooe, it is ofi :J necemry to assume that the system under study is 
a linear system The gen.ral steps involved in the study of a physical system 
may be described by ?@le 4-1. 

A amvenient method uf hc t e r idag  a linear system is by its input- 
output relationsfiip. In @, a system may have m a y  inputs and many 
outputs. 

The electric circuit given by Figure 4 2  can be conaidered as a system with 
a single mput and a .;in@ output, where 4t) is the input and eo(t) is the 
Output.  

R 

In a linear system, the varkbb U(t) and. 4A can be related by 

if the system is causal .id is ;.t rest at to. where h(r, A) is calied the system's 
impulse response. If system is charactefi-ku by a constant coefficient 
differential equatic A. then it can be shown t;.dt h(t, A) = h(t -A). 



4.2.1 S t a t e V a d a b l e ~ o t a U n e a r S y s t e m  

llte classical method of describing a linear system is by its impulse re- 
s p m e  and, if the system is also time-invariant, by its frequency dormin 
transfer functiw. It should be emphasized that frequency domain analysis, 
a l t h d  thc most attractive, can only be utilized for time-invariant linear 
system. In nd inca r  and time-va~.ng linear systems, the frequency domain 
analysis cannot be utilized to advantage. Even in the timeinvariant case the 
frequency domain transfer function suffers from the major disadvantage that 
all the initial conditions of the system are ignored. The analysis and the 
synthesis of linear system, time-wrying or not, is a formidable task for multi- 
variable systems (vector inputsutput), and determining the interrelated effects 
in a multivariable system is a complicated and exhausting process. 

The modern alternative to classical methods of describing 3 system is by 
the "state variable" technique, which is a matrix method for handling multi- 
variable systems. The technique aids conceptual thinking and provides 3 unify- 
ing basis for quantitative infornution about the systvm. The state of the 
system is defmed in t e r n  of a minimal set of variables Xl(r), . . . , X2(r), . . . . 
X,,(f). such that information about these variables at time r = ro along with the 
input u(r) for all r > ro uniquely determines the output Y(r) for r > to. 

The state is the answer to the following question: "Suppose u ( r )  for r > ro 
is known. What additional information is needed to completely obtain Y(r) 
for r > r,?" We shall discuss the concept of state later in the chapter and give 
ewmpks of its use. 

MEAlYISaUARE ESTIMATION 
In this section we shall construct a mean-square performance index in order 

to carry out the estimation proc,ss. Throughout this section. unless specified 
otherwise, the norm of a randoni vector X is defined as 

where X is a column vector, and prime denotes the transpose. 

Now let us specify the estimation problem. 1x1 two rdndoni vectors X and 
Y of dimensions n and M, respectively, be jointly distributed. Suppose Y is 3 
measurement which in general has been contaminated by noise. It is intu - 
t i d y  obvious that the received measurement. Y, should improve the informa. 
ticm about X. That is. if we had 3n uption guess about X. knowledge of t' 
should improve the information about X. To be more spccific. Ict us ask 
ourselves the question, 'Given the iiieasuiciiicnt Y = y. what is the best csti- 
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mate of X, denoted as X(Y) ,  corresponding to the random vector X?" The 
concept of '?xst** has not been defmed, but the most popular criterion is the 
meansquare estimate. Thus we are seeking to obtain the estimate, Nu), 
which is the hnction of measurement Y = y such that: 

over all random vectors 1. 

The criterion given by (4.1) is referred to  in the literature by the following 

(1) Minimum mean square estimate 

(2) Least square estimate 

names: 

The solution 3f (4.1) is relatively simple and is given by: 

Heme, we are assuming a cost function associated with the uncertainty of X.  
We choose &y) as the best estimate that Y has the value y under condition 
(4.1) and claim it is given by condition (4.2). 

Let us verify (4.2). 

From the above equation, the only term that has I involved in it is the first 
term, and the right-hand side of the above equation is minimum if and only if 
Ell1 I - E[XI u] II J = 0, which implies that the best solution of I, is: 

A 

I = E [ X  I u] = 2(Y) (4.3) 

It is very important to mention that, in general, g(Y) is a random vector, 
since f(*) is a function of the random vector Y. However, for each measure- 
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ment Y = y, the corresponding &) is a deterministic outcome of that ran- 
dom vector. 

Let g be a function of Y from R" - R" and assume f y ( y ) # O .  From 
condition (4.1) it is obvious that: 

because we substitute g(Y) for I UI that equation. 

Now, let us take the expeck,: value of both sides of Eq. (4.4): 

Utilizing the identities:* 

and 

we obtain: 

Eqvation (4.6) states a very significant result: the estimate ,? = E[Xl Y] is 
the best solution for the unconstrained case. Thus, the result can be appro- 
priately summarized via a theorem. 

Theor' 1 

For two joii,..y distributed random vectors X and Y with joint probability 
density functions f',(x.y) and f , , @ ) # O ,  the best estimate of E[l lX - 
g(v)ll 2 ]  is given by: 



Remurk 1. If e = X - 3, then 3 = E(XI Y) is uncorrelated with any 
mapping of the random vector Y. Mathematically we can write: 

where the prime denotes the transpose. The reader is advised to verify this 
equation. 

4.4 UNEARESTlMATE 
The estimate just obtained is indeed the best with respect to the mean- 

square cost hmction. However, X(Y) is a nonlinear function of Y (for the 
general case), and it is extremely diffiult to obtain the exact relationship. 
Since very oRen fxy(x, y) is not available. then HXI Y) may not be achiev- 
able either. 

Now we shall do the next best thing and introduce a constraint that z(Y) 
has a linear form of Y. That is, 

R = A Y + b  (4.8) 

where A is an n X m matrix and b is an n-vector. With the constraint (4.8) on 
Eq. (4.7). we get: 

E [ I I X - A Y -  bl12] = E ( ( X - A Y -  b)'(X-AY- b)] (4.9) 

Now we can choose A and b (parameters) such that Eq. (4.9) is minimized. 
Let us denote the optimal values of A and b as A, and bo, thus &) &hall be 
given by: 

z(u) = A,Y t bo (4.10) 

Without any loss of generality, assume that X and Y have zero mean. To 
minimize the cost function given by Eq. (4.9), we shall calculate A, and bo in 
the usual manner by setting: 

1 i a  



and 

a a - f l [ l l X - A Y -  aA bl12] = G E [ ( X - A Y -  b ) ' ( X - A Y -  b)] P O  

From the first equation, we Bnd: 

bo = 0 

and, from the second, 

(4.1 1) 

since X and Y are zero mean. Hence, 

$0 f cxuc;' Y (4.12) 

Now, if X and Y do not have zero mean, the random variables X -  mx and . 
Y - my have zero means. Applying (4.12) yields: 

or, equivalently, 

2((y> = m, t cXy c;' ( Y  - m y )  (4.13) 

In the next section, we shall show that the best estimate can be derived by a 
different appwach, the so-called "orthogonality principle." The orthogonality 
principle is one of the most important ideas in linear estimation theory. Let 
us define an important concept. 

Definition 1 

An estimate z(Y) is defined to be unbiased i f  

Ez(Y) = X 
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That is, the averags (with respect to fy(y)) of the estimate is equal to the 
true value. This definition is motivated by the fact that if we are receiving a 
perfect measurement Y (Le., Y is not random), then g(Y) is not a random 
variahk, and 

That is. if there wee no measurement errors, and thus no uncertainty, then 
the estimate is identical to the true value. Also for the unbiased estimate, we 
can write: 

E((X - 2) (X - f l ]  = E((2 - E2)  (2 - E?$] = cz = €(eo') 

(4.15) 

where 

4.5 ORTHOGONALITY PRINCIPLE 
In this section we shall assume, without loss of generality, that all param- 

eters are of zero mean, unless specified otherwise. For example, if the mean 
of X is non-zero, then we shall introduce a new random variable y= X - mx 
which will have zero mean (as in the previous section). 

The concept of orthogonality is extremely important in the theory of 
linear mean-square estimation. We shall show that the orthogonality principle 
will serve as a necessary and silfficient condition that the linear estimate 2 be 
the best. The orthogonality principle states that if the measurement Y is 
orthogonal to the error e = X - 8, i.e., 

then the estimate .f is the best linear m.s.e. 

Definition 2 

An estimate 3 is optimal if it is the best linear mean-square estimate. 
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4.5.1 Discussion of Vector Spaces 
The only differe.ice between those spaces that are generated by random 

vectors and those that are nonprobabllitic is due to the way we detlne the 
inner product (see Appendix B). 

Let W be a vector space generated by the set of all linear combinations of 
the random vectors X , ,  X z ,  . . . , X,,. Let the inner product between two vec- 
tors X and Y E  V be def ied  as: 

The norm generated from this inner product is defined by (X,X)'I2. Since 
the norm under the definition of the inner product is different than the norm 
11*11 in the previous section, we shall denote it by l14q.m~, where it is defined 
via: 

Assume that the R vectors X , ,  . . . ,X,, are linearly independent, and let M 
be a subspace in V. Then we know that every vectar X in W can be uniquely 
decomposed into the sum of two vectors, '7, belonging to M and Q, belonging 
to the orthogonal complement of M, denoted by M'. Thus, 

x = '7, + v2  

where 

Recall the projection of X denoted as P on M is given by: 

PX = '7' 

and the projection of X denoted by Q on M' is gven by: 

QX = '7, 
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where 

P + Q * f  

and I is the identity operator. Hence, 

Q - f - P  (4.19) 

Now we ciin use the concept of a vector space to obtain a significant result. 

meorem 2 

ht X be a random E W. and let Z be a vector EM. Then 

reaches its minimum if and only if 

Z-PX 

Proof 
For any X E 3". we have 

x = '1, + VZ 

where q l  E M, q, E M', and q1 = PX,  ql = ( I  - P )  X. We shall also have: 

(4.20) 

In the above equation X - 3 1 ,  is orthogonal to M, Le., X - T ) ~  EM', while T ) ~ ,  

Z, '1, - Z are all memhers o f 3 .  Uiilizinp these facts in Eq. (4.20) yields: 
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From the above equation, it is obvious that: 

since llq, - Zll 
and only if 

2 0. Thus, the inequality in (4.22) becomes an equal '1' if 

Z = q ,  =PX 

4.5.2 Application of Theorem ;L 
Assume that we have received m measurements that are linearly inde- 

pendent, say, the random vectcrs Y,, Y2,. . . , Ym. Let AI be the vector space 
spanned (generated) by the set of all linear combinations of Y,, . . . , Y,. 
According to the theorem, II X -  Zll is minimized if and only if 

Z = P X € M  

If Z E M ,  then 2 can be written as the linear combination of 
Y,, Y y .  ., Ym. 

Claim 1. Let Y,, Y,, . . . , Y, be the measurement vectors (observations), 
and let M denote the vector space generated by these mecurement vectors. 
Then vector is an optimal estimate of X if and ody if  X is the projection 
of X onto M .  

Claim 2. The vector 3 is an optimal estimate of X if a r d  only if the error 
e = X - f is orthogonal to the observation vectors Y,, Y,, . . . , Ym, i.e., 

Claim 2 follows from Claim I ,  because if ,? is the projection of X onto M, 
then X -  8 € M*.  
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P=c,,c;' Y 

when we Bad one obiemation wxtor only (see Eq. 4.12). Use the orthe 
t y p r i D d p l e t O d e r i v e t & e ~ d t .  

selptka 

l q e r ) = E [ ( x -  8, -'I = o  

Since we know f t = A Y ,  whew A is to be deternriaed, then 

E[(X-  AY) v'] = E [ X Y ' -  AYY'] = O  

'Ibis is true if and only if 

E(Xy? = Cxy = WYy? = ACU 

m g  that the inverse c;' exists, then it is trivial to see 

A = C,, C;' 

as asserted. 

- 2  
h t  both .Y and Y be random variables such that: 

show the best linear m.w. of x = Y' is given by: 
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sobdioa 
We know the man of the d u e  Xis: 

with respect to u and b as in Section 43.  However, this appraach is relatively 
lengthy. 

Using the orthogonality principle, the solution is much more direct. l e t  Z 
be defined such that: 

E[(Z- 9 u) - 0  (4.24 j 

where 

Z = A Y  

Hence, from (4.24) and (4.25). 

E[(Z - A Y )  Y] = 0 

which implies: 

(4.25) 

(4.26) 



4-6 

where bo& r(t) and R(f)  are assumed to be wid- stationary 

We rhrll use the same notation for the enternbk and the pmers. The 
purpose of the Wiener-Kdmogorrrv (W-K) t h e o ~ ~  is to extract the signal from 
the noise, that is, to derive an optimal estimate of s(t) denoted by 31). where 
!he performam index is as before the mow square. 

Let us consider a mom gemd case that s(r), nunely, o(t t a). Let qr t a) 
be the corrrrpanding optimal estimate and let h e  e m  e(t t a) be d e f d  as: 

Them are three important cases: 

(a) I f  a > 0, then qt t a) b called the (optimal) pndiction of s(t + a). 
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Note that YJr) is a liaear fimctian of Y(*). 



= R,(r - o) + R,(r - u) (433) 

(4.34) 

1 0  



P- 

d m n e m b m q  that R$O) * r[g(t + a)] and substituting this and (4.34) 
and (4.35) ioto (4.31) yields: 

lhe above squation demonstrates that .he optimal solution depends on the 
autocornlation (covaiance) functions only. It should be emphaszed that this 
is an e x t d y  important d t ,  because the optimal Nter h(t) is obtained 
from the knowledge of R,(*) and ItI(-) and not- directly from N f )  and n(r)- 
Hence. there are infinitely many signals that give rise to the optimum solu- 
tion, all having the same autocorrelation (covariance) function. Wiener mini- 
mized E(e3r))l given by Eq. (4.36) via the calculus of variations; we shall use 
the orthogonality principle given by Tkorem 1. We can now state the solu- 
tion for the optimal fiter by the following theorem 

lneorem 3 ( W i i t i o p f )  

obtained from the solution of the equation: 
E[e:(f)] given by Eq. (4.29) is minimized if and only if E(t) can be 

i;(o) (Rs(t - a) + R"(7 - o)] do =s: 
(4.37) 
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Thus, the optimal solution gt) is given via: - 
qt) =Jm Y(A) g(r - A) dx =sm 8(A) Y(t - A) dx (4.38) 

-- - W  

Equation (4.37) is known as the Wiener-Hopf equation. 

Roof 

We have proven the orthogonality principle for the discrete case. In what 
follows we shall show that the solution of Eq. (4.37) is equivalent to the 
solution of: 

where q r )  is given by Eq. (4.38). 8 = r - t with -00 < t < 00 Let us use the 
notation qt, I r )  as the optimal estimate to Fq. (4.29). given the observation 
Y(r )  over (-oo, r ] ,  where r ,  = t t a. 

To prove (4.39), let V’ be the space generated by the random variable 
(s(1,)) .  Let Q C ’I’ be a space generated from ( Y(r)) given by elements: 

where h(*)  is a continuously differentiable function. Utilizing Theorem I ,  the 
norm (mean square) 

is minimized if $ = Ps E Q and from Claim 2: 

which yields: 

which proves the orthogonality condition. 
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4.7.1 Discussion 
d he Wiener-Hopf equation (437) will provide the solution for Rt). HOW- 

ever, obtaining &) from the integral equation is extremely difficult. Assuming 
the observation Y ( f )  is available over the interval (-=,f),we can utilize the 
frequency domain approach to  solve for $(r) by obtaining wu). 

It turns out that Rf)  does not correspond to a causal system (realizable), 
since, in general, g(f) is non-zero for t € 0. The condition of realizability is 
given by the Paley-Wiener condition (a suficiency condition) which states that 
a system with the transfer function HGw) = ,dh(t) is realizable only if 

(4.10) 

The linear system described above will, in general. violate condition (4.40). 

If we drop the condition of realizability for the moment, we obtain (to be 
proven) iic;w) as: 

Hence, z(t) can be obtained as the inverse Fourier transform of &h). Thus, 

n o' Ss(w) exp [io(t + a)] 
dw (4.42) 2n 

Let C denote &[e:(r)] and C' its minimum over all It(-). We shall also prove 
that: 

Remark 2. I f  s ( f )  and n ( f )  are uncorrelated, then 

(4.43) 

(4.44) 



Remark 3 Utilizing the orthogonality principle (see Eq. 439). we can 
veri@ that: 

Theorem4 
The optimal transfer function @ja> corresponding to the imp* response 

is given by Eq. (4.41) and Co given by Eq. (4.45) is the minimum (optimai) 
performance index. 

Roof 

From the Wiener-Hopf equation, we have: 

Rsy(7 + a) = Rs(7 + a) = i;(o) R y ( f  - (I) do s: 
Now let us take the Fourier transform of the above: 

exp (iwa) Ssy(w) = Rsy(r t a) exp (-jwr) d7 J: 



s asserted. 

To prove Eq. (4.43). let us calculate C = E[e:(r)] via the frequency domain. 
From Eq. (4.36), we know: 

C RJO) - 2 h(7) Rs(r + a) d7 J 
t $ $h(r) h(u) Rr(7 - (I) d7 do 

Thus, C can be rewritten as: 

+ -!- J$ h(7) h(u) S,(w) exp [-Jo(o - 7 ) ]  dw do d7 
2n 

h(r) exp (iw7) d7 Ss(w) exp (iwcl) d o  J Ss(o) d o  - - 
2R 

t J h(7) exp UWT) d7 h(o) exp (-Jwu) do S Y b )  d o  
2n J J 
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Now if we substitute &o) ftom Eq. (4.41) into the above equation, we 
obtain: 

The proof is now complete. 

Example 3 

they are both of zero mean. Let 
Assume that the signal s(r) and the noise n ( f )  are uncorrelated and that 

and 

Obtain the optimal estimate qf) of s(f t a), 

solution 

S,(w). If a = 0, then 
Since the noise and the signals are uncorrelated, then S,(o) = Ss(o) t 

I 



For prediction and smoothing a + 0, then 

and $(r) is its Fourier transform. 

4.7.2 A Very Important Remark 
Although the optimal impulse response %(t) corresponding to 3r) is not 

realizable, it can be salved mathematically. We have solved for &jio) by 
utilizing the frequency domain analysis, where $(t) is the inverse Fourier 
transform of &io). We should emphasize that the solution was possible in 
closed form (see Eqs. 4.41 -4.43) by making some significant assumptions: 

(a) First, we assumed that the measurement Y(t )  passes through a time- 

(b) The measurement of the observation Y(r) was available over the senu- 

invariant linear system (filter). 

infinite interval. 

Assumptions (a) and 0) were made so that we could utilize the frequency 
domain approach to solve the complicated Wiener-Hopf equation. 

4.7.3 Wlener-Kolmooorov Theory for the 
Time-Varying Case 

It should be emphasized that the Wiener-Kolmogorov theory does not have 
to satisfy assumptions (a) and (b). In that case, the optimal linear systeni will 
be time-varying, and we would not be able to use the frequency domain 
analysis to advantage. 

The W-K theory for the time-varying case assumes the availability of the 
observation Y(r) over the finite interval If,, 4 .  Now we will seek a time- 
varying impulse function &f, r) such that (see sketch): 

(4.46) 
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where 

We now state 3 general theorem concerning the optimal solution. 

The optimal solution ;?cr) given by Eq. (4.46) is obtained if and only if 
;(r, 7 )  is solved from: 

t 
R J t  - CU) =lo &, U) R,(u - a) do (4.48) 

Roof 

The proof of tI- WienerMopf equation @en by (4.46) is equivalent to the 
orthogonality principle: 

E[ea(t) Y(e)] = 0, to G 8 Q t 

as already discusei by Throrem3. The proof is i ~ ~ n t i c a l  to that of 
Theorem 3 with the orJy difference being that the integral limits are from to 
to t and h(t - 7 )  64 replaced by h(r, 7). 

Note that if the power spectriiiiib of n(f) and fit) do not overlap (see 
sketch), then S&o) S,(w) = 0 and from Eq. (4.43). we gf :. 

co = o  
i a i  



?bus, thm is no error in the system. Hence, we can separate the signal and 
the noise perfectly. 

4.8 OPTIMUM CAUSAL SYSTEMS 
Now we shall seek an optimum system which is2onstrained to be physi- 

cally realizable, Le., the impulse response should be h(X) = 0 whenever X < 0. 
Thus, from Eq. (4.38): 

(4.49) 

that is, qf) is not a function of Y(t - X) for X C 0, which is not available, 
since $(I) = 0 for X < 0. The upper bound is 00, since the ohamation over 
the interval I--, t ]  is avail; ble to the estimator. 

Without any loss of generality assume that ct = 0. ?hen the orthogonality 
principle is: 

and its corresponding Wiener-Hopf equation is: 

Ro,(7) =lrn $(o) Ry(7 - (I) do 

or 

(4.51) 

(4.52) 

(4.53) 
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NO& lbnt for dl r > 0, di) = 0. Taking the Fourier transform of the above 
yiei8s: 

We haw already breuored the fsct that the bilateral transform f l s )  of any 
absolutely intqpbk fuaction f ( f ) ,  for f > 0. wili have pdes in the l e f t U f  
plane (u1p), and, for f <0 ,  will have polerin the righthdf plam(RHPk 
ntus, as) cannot have LHP poles since Q(r) = 0 for all r > 0. We know SJs) 
is an even function ofs; let us decompose it as follows: 

Where S&) Wiu have LHP poles and S-(-s) will have RHP poles (that is, 
Sics) is analytic m the! RHP and Si&) is analytic in the W). Using 
Eq. (4.56) in Eq. (4.55) yields: 

From Eq. (4.57) we obtain: 

(4.58) 

We observe that 4s) S&) has its pokr in the LHP and Q(s)/S;(-s) has all 
its poles in the RHP. But SSy(s)/S;(-s) has pdes all over the complex plane. 

Let 

(4.59) 



(4.6 I ) 

Le8 us derive an optimal q r )  of s(t) over (-me r). 

solntion 

From Eq. (4.58): 



SAW)= 1 + 

a 

and 



and 

q2 + 0 2 )  

(1  + w') (4 + 0 2 )  
Sy(w) = S&W) + SJ0) = 



Ab. the pertial fraction enpansion of S$YS;(-s) must be obtained: 

atier fraction expansim. Thus, 

The optimum filter is given via the fm. 

4.8.1 optbnal Prediction and Smoothing 

We have thus far obtained the optimal estimate qr) of s(r)  given Y(r) on 
the interval (--, t ] ,  Le., we have derived the optimal filter. Remember that 
q f )  is the output of the linear system with the impulse response g(r) and the 
input Y(r). Suppose we are interested in estimating s(r t to) based on the 
m e  observation Y ( r )  on (--, r ] ,  where ro > 0. This is called prediction. 
Before obtaining the optimal predictor q*), let us generalize the estimation 
problem somewhat. 

Let s( r )  and n(t) be as before, Le., they are zero mean and wide-sense 
stationary such that: 

R J r )  = 0 
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where g(-) is the i m w  response of a time-hvariant system. 

(4.62) 

Now kt us mini- 

where WJr) is the output of the mter with impulse responsej(r) and input 
Y(r), and 4.) is restricted to be c a d .  The o~timal solution Yt) is thus the 
output of the system with impulse response Mr) and the input Y(r). Equa- 
ticms (4.62) and (4.63) are the generalization of the filtering problem. For 
example, if at) = 6(r), then W(r) = o(r). 

If At) = 6(r f re), r,, > 0, then Wr) = s(r f r,), which corresponds to the 
observation Y(X) over the intend (--,r). 

If &) = exp (-m), T > 0, then 

Let %- (jo) denote the Fourier transform of dr). Then following the same 
procedure as from Eq. (4.50) to (4.61) we obtain: 

(4.65) 

where (4.65) is a generalization of (4.60). 
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Now as) is given by: 

Rcarork 4. In Examples 4 and 5 ,  Ws) = 1. 

Use Example 4 to obtain the best estimate of s(r + ro), ro > 0. 

SOhDtion 
g(X) = 6 0  + to) or S(s) = exp (rod. Thus, as before. 

2 + s  
l + s  S p )  = - 

Now, due to the factor exp (r,,s), the decomposition of S(s) SsY(s)/S;(-s) 
is given by: 

However, let us derive the portion of the function %(s) S,,.(s)/SY(-s) 6or- 
responding to r > 0 or G,(s). Thus, 

therefore, &s) is then given by: 

A exp(-ro) 
H(s) = -- 2 + s  

For smoothing, the results are similar. 
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4.9 MATCHED FILTERING 
In laser and radar applications, when a system is used to detect a target, 

the form of the signal must be known. However. often the signal is con- 
taminated by additive noise. A good criterion for estimation could be the 
signal-tu-noise ratio (SNR), which we would be interested in maximizing. 

Now let us assume that s(r) is a deterministic signal such that its Fourier 
transform (denoted by qw))  exists. Let Sn(w) be the power spectrum of the 
noise contaminating the signal. Let both the signal and the noise pass through 
a timeinvariant system with the transfer function H(jo ) ,  and let Y,(r) denote 
the output correspanding to  s(r) with Y,,(r) the output mresponding to n(r). 

Suppose at r = r , ,  we are interested in maximizing 

(4.67) 

Y : ( t )  is the output power of the signal, and wc kniiw thst E(Y : ( r ) )  is the 
output power due to noise. We can write Eq. (4.67) in terins of the frequency 
parameter. We know that: 

and 

Also note that: 

and 

(4.68) 

(4.69) 

(4.70) 

(4.71) 



Thus, from (4.71). Y$) can be obtained as S-' of H(jw) S(w), i.e., 

(4.72) 

and E [ Y i ( f ) ]  as the $-I  of S (0). Thus, 
' n  

If we are interested in maximizing the SNR given (4.67) at r = I , ,  we must 
maximize: 

We now state and prove the foilowing theorem. 

Theorem6 

obtained if: 
The maximum value of the signal-to-noise ratio p given by Eq. (4.74) is 

where k is a constant. Before proving the above, we note the following: 

(4.75) 

The intuitive concept of Eq. (4.75) is obvious: The filter should pass those 
frequencies for which the amplitude spectrum of the signal is large compared 
to S,(o), which is the power spectrum of tlie noise. 
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The spedal case where SJo) is constant, say,&., is very important, Le., 
white noise. In that case Eq. (4.75) becomes: 

The factor k / d o  is gain, which we shall assume is unity without any loss of 
generality. Since the transfer function that maximizes p is given by the con- 
jugate of S(o) (and exp (-jutl)), the filter H(j0) is called the conjugate 
tilter. However, a more popular definition is the match fdter, since Nu) is to 
match s*(o) exp (-jwrl). 

Roof of lheorem 6 

The proof is relatively simple. Using the CauchySchwJrz inequality: 

we set: 

and 

The left-hand-side. when divided by the first integral on the right, is simply 27rp. 
which implies: 

(4.78) 

As a consequence of the CauchySchwarz inequality, if f(o) = kg. (o) ,  then 
we shall have the equality in (4.77). Therefore, p 5:comes maximum i f  

Thus, the proof is completed. 
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4.1 0 KALMAN-BUCY FILTERING 
Before discussing Kalman fdtering, let us review some basic concepts 

needed in the discussion. 

kilnition 3 

T Q t ,  

A continuous Markov process X(r) for t 2 to is a process that, for every 

where X can assume any value in the interval to < X < T Q t .  For the discrete 
case the definition is similar. Let to, I , ,  t 2 , .  . . , t, be such that: 

r , < t ,  < t , <  ... < r n  (4.80) 

and {A'(*)} be a discrete set of random variables taking on the values from 
{r$;= I .  Let us use the notation X(i) instead of X(ri). We can now define the 
discrete Markov process. 

Definition 4 

satisfied, we have: 
The process {X(i!) is a Markov process if for every n such that (4.80) is 

Now utilizing: 

(4.82) 



Hence, the Markov r acess is defined by the conditional probability density 
functions /(X(i)l X(i - 1)) for i = 0,l..  . . ,n. The Markov process is funda- 
mental to Kalman-Bucy filter development. 

As already discussed, a linear system can be characterized via the classical 
method using the impulse response or the modern approach using the state 
variable approach. Kalman-Bucy filtering relies on the state variable charac- 
terization, where the state is a Markov process. 

The leader is assumed to be familiar with the simple slate variable represen- 
tation. If this familiarity does not exist, the reader should consult Appen- 
dixE, which contains a simplified discussion of state variables along with 
some examples. That appendix is sufficient for our purposes. 

4.10.1 Contlnuous Kalman-Bucy Recursive Filtering 

We shall briefly discuss the continuous version of Kalman-Bucy (K-8) filter- 
ing. The most important part of K-B filtering is the fact that estimation is of a 
sequentiai nature (Markovian). We shall discuss K-B fitering for linear systems 
unless specified otherwise. 

The state variable characterization of a linear system can be generally written 
as: 

where X ( f )  = [X, ( f ) ,  . . . , X,(t)]  ’, where the prime denotes the transpose, U(r) 
is a p X I matrix, and Y ( f )  is a q X 1 matrix. A(t),B(t), C ( i  * : f )  are matrices 
of order n X n, n X p ,  q X n, and q X p, respec*!vely. 

Example 7 

equation: 
Let a time-invariant system be characterized by the following differential 

(4.84) 

where Y(t) is the output, U(t, !hc input. 
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Define the state variables as follows: 

(4.86) 

(4.87) 

Equation (4.84) can be arranged so that the highctarder derivative term 
appears on one side of the equation. Thus, 

Substituting (4.85) - (4.87) irrta (4.88) and utilizing the defining relations of 
the state variable into (4.88) yields: 

x ,  = X 2 ( r )  (4.89a) 

x, = X 3 ( f )  (4.89b) 

x, = - X , ( f )  - 3 X , ( f )  - 2 X J f )  t 2 I l ( f )  (4.89c) 

The system described by (4.84) cui thcn bc denned by the state variable 
representation of the form (4.83). Thus. 

A =  

B =  



D = O  

The solution of X(r) is given by: 

where 

(4.91) 

d)(fd, to) -- I (identity matrix) (4.92) 

4 ' ( f , f o )  is called the transition matrix. which is a matrix of order n X n. 
Furthermore, it can be shown that (see Appendix E) the following I itions 
hold: 

and Q, is a nonsingular matrix. 

In a time-invariant system ( A ,  B, C, and D are constants), the transition 
matrix *(I. I,) takes the fo?rn: 

where 

. . .  A']' A " 1'' 
exp { A  f }  % I  + At + - T i .  + . . . + - -  ~- + -. f J !  
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A &eaed diagram of the system given by Eq. (4.83) is given in Fiyue 4-3. 

R&cg.--conliOundbn 

The continuous Kalman estimation requires a linear system model of the 
form: 

i = A(f) X(r)  + W )  mlo (4.95) 

whee x(t) is assumed to be a m d o m  process. an II X I matrix, I l ( r )  a 
randomnoiseofzeromean,apX1 matrix,v(f)isarandomnoisewithzero 
mean and a q X I matrix uncorrelated with q r ) .  A(f), &If), and C ( r )  are 
matrices of dimensions n X n. n X p, q X n, respectively. The absenation 
signal u(r)  is contaminated by the additive noise process 4t). The most im- 
portant property of K a h n  estimation is the fact that a differential equation 
technique developed to solve the optimal solution has the property that it can 
be synthesized in a recursive m n r r  because the differential equation tech- 
niques are in most instances equivalent or very closely related to recursive 
techni -~es. That is, the estimate dt one point does not need the processing of 
ail the measurements, but onby the infor.hation stored by the point preceding 
it. 

let  us assume the fdowing statistical moments: 

EQt) = 0 

Ev(r) = 0 

(4.97) 

EUI(',) vf(?2)  = LS(f2 - ?,) 



where Q and L are of &mn.sionr p X p and q X q, mpcctivcly. Thtrc 
matrices are generally functions of rime t ,  and 6(t2 - t I )  is the Daac &Ita 
function. The functions q t )  and v(t) am white noise terms with mpctire 
combcesKaadL. 

The I<ll)man rccuniw problem is OIK in which we arc given the okeruation 
value% (conti~tuous mtaswemmt~) of Y(r), to G T G t ,  and it IS dcsired to 
fiad the estimate at time tI  denoted as f ( t l  It) or X( t , )  having the form- 

where h(t. T) is the impuly. response of a linear system with the input Y(-) and 
the output X( a) minimizing 

where W b any n X n positive semidefinite matrix (it can be shown that the 
minimization of (4.98) is independent of W. 

The state estimation problem can be divided into three classes: ( I )  filtering 
if t = I , .  (2j prediction if t ,  > t ,  (3) smoothing if t ,  < f .  

Filtering 

The optinial solution is given in Kalman's original work. We know &ti 1 )  is 
the optimal 4l; t ion if and only if it satisfies: 

which is the orthogonality principle; without m y  loss o f  generality we haw 
assumed to = 0. 

SinLe we expect the optimal solution t o  be a combination of the %-)  a d  the 
measurement Y ( t ) ,  we make a guess that j ( f l  f )  is the solution of the difierential 
equation 

where F ,  ( f )  and F2( f )  are chosen such that the orthogondity cwdr:ion in 
(4.W) is salicficd. We know that if the orthogonality condition is zstisficd 
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(4.102) 

4f) is given by Eq. (4.37) and p l r )  is given by: 

and can be obtained as the solution of the nonlinear differential equation 

P= AP+ PA' - p@' L-' CP+ BQB' (4.104) 

with the given initial condition 40)  = E(X(Ol0) X(OI0)'). Note that we have 
dropped the argument r for convenience. Ihe proof will be given later, but w 
shall first give an example. 

In Figure 44.  Ute optimum continuous filter is diagrammed. The input to 
the system is the observation Y(r)Awhich is the contaminated 
outputs could be considered as X(rlr) or Cf(rlr) .  where 
optimal estimate to Y(r). 
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E=+ 
An object mover with an unknown constant velocity Y on a straight line 

trajcaocy. Suppose we obsmn the projectile at the initial time to = O  at a 
known p i n t  ~ ( 0 )  as shown by: 

Thereafter the projectile is tracked for T seconds. The observation consists of the 
displacement from the o m  which has been contaminated by additive white 
noise of spectral density No wattslhcrtr. Let us assume the velocity is a zero 
mean Gaussian random variable with variance 02. ht us find the Kalman filter 
yielding the optimal linear estimate of V. 

solotion 

Since the speed is constant p= 0 and the observation F( t )  by definition is: 

- 
Y(t )  = s( r )  + n ( r )  = 40)  t t v t n(r)  

If we let Y ( r )  = r(t) - NO), the dynamic system becomes 

V = O  

U t )  = r v t  n ( t )  
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Thus. A = B  = 0, C = f ,  and L =No from which 

0 = F,( f ) [Y(f )  - f pl 

k = -P2(f)f2/No 

F2(d = fit) tlN, 

The initial conditions are y(0 I 0) = 0, pI0) = 0'. 

T o d w  for F(f),* wc need to abnin F,(f) which in .Am r e q ~ t s  the solution 
of p(r): 

from which 

Thus, 

For the special case that p( T )  + constant as T + 0. from (4.96) we get: 

"we shall denote h , t )  by ?ttn. 
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Re/ne.r& 5. In filtering we shall often write at) instead of %tk) or 

which implies 

That is, if the contaminated signal is observed for a long time, we should get the 
exact estimate. 

Evample9 
Let the observation Y(t) be given by: 

where d, a,. 8, are, respectively, the amplitude, carrier frequency, and phase. 
Let v(f)  be a white noise process with a variance of unity. Assume that a,, 8, 
are known exactly. Estimated. 

solution 

Since d is constant, then d = 0. Now, we can have: 

k = o  

X(0) = X(r )=d  

Hence, A = B = 0, C = cos (wof - e,,), I) = 1 and t = 1. From Eqs. (4.100) to 
(4.103): 

P = - [COS (w,t - eo) f i t ) ]  2 (4.107) 

F,( t )  = - F2 t )  = - COS (w,t - Oo) f i t )  (4.108) 
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Thus. 

x^ = F,(r )  f i r )  + F,(r) Y(t)  (4.109) 

where F,(t)  and F,(r) are given by the previous equations. 

The solution f i r )  requires the solution p(r)  from Eq. (4.107). It is apparent 
that even for the scalar case, the solution can become fairly tedious. 

Remark 6. Note that 4:) is the estimate of X(r), given the observation Y(r). 
The corresponding uncertainty (covariance) of 2(f) is given by f i r ) .  Since. 

P ( t ) = E [ e ' ]  = E { [X( t ) -B( t ) ]  [X(t)-B(t)J'l 

= E { [Z(f) - E,f(t)] [P(f) - E 2 ( f ) ]  ' 1 = cov B(f) 

for the case of the unbiased estimate, then f i t )  is indeed a covariance. 

Example 10 

estiiiiate w,, and 8,. Obtain the model and the form of the solution. 
In the previous example suppose d is known perfectly and it is desired to 

Then 

Now if we define X , ( t )  = X(t) and X,(t) = 8, (t) = k(f), we have: 



(4.1 10) 

Thus, by inspection: 

B = O  

c = [ I  01 

D =  1 

Now the solution is more involved and the estimate ? ( r )  of X(t) with its 
covariance P ( r )  can be obtained as before. 

Example 11 

This example is taken from re .mce 18). Assume that Y( t )  is a white noise 
process with unknown mean X .  Thus. 

EY(t) = x (4. I 12a) 

Suppose we want to estimate X when the observation Y(7) is received over :he 
interval IO, t l .  
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Solution 

Since Xis constant, we can construct a model as follows. 

i = O  

Y = X(t)  .t v ( t )  

E V ( 1 2 ) Y ( t l )  = L 6(t2 - I t )  

From Eq. (4.105), we get: 

i ( f )  = L-' P2 ( t )  

or 

Integrating both sides yields: 

where c is a constant. 

However, at t = 0, we get: 

- 1  
HG p(0) t .-.I r C  = 

c 

I 
P(t)  = - 

L- t + P(0) 

166 

(4. I 13) 



Now, substituting Eq. (4.1 13) into Eq. (4.100). i.e., 

2 = F, ( t )  f(t) + F2 (1) Y(t) ,  g(0) = 0 

where, from Eqs. (4.102) and (4.103), 

- 1  

t + -  
F, ( t )  = A ( t )  - FJt)  C l f )  = - L 

P(0)  

I 

t +  - 
F 2 ( t )  = P(t)  c ' L - ' ( t )  = 

P(0) 

we obtain: 

Y(r ) .  ?(O) = 0 (4.1 14) A - 1  x = -  X ( t )  -I- ~ L L 
+ KO) + P(0) 

Froin the above equation, the transition matrix 9 (f,O) is given by: 

L 
P O  W t . 0 )  = L 

P ( 0 )  
t + -  

This is true because 

Equation (4.14) can be solved by using Eq. (4.90). Thus. 

(4.1 15) 
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Simplification of the above gives rise to: 

(4.1 16) 

Since both L and P(0) are constants, we obtain: 

which is expected. Thus, for a long observation, ?(t) b e i m e s  independent of 
PIO). 

Now we shall prove Theorem 7. 

proof 

We can extend the general Wiener-Hopf equation given by (4.48) to the 
case where the signal s( t )  is changed to the vector X .  Then the cross correla- 
tion function Rsy(r  - a) will be simply changed to R,,(t - a). Let us also 
assume that the mean of X and Y is not zero. Then we will change 
Rxy( t  - a), and Ry(u - a) to C ( t  - a) and Cy(u - a), respectively. Thus, 
the generalized Wiener-Hopf equation becomes: x y  

Cxu(t - a) = f' G (c ,  u) Cy (u - a) do (4.1 17) 

' 0  

where G(f ,  u) is the generalized impulse response. 

The above equation is equivalent to the orthogonality condition. Let us 
take the left-hand side derivate of C + * )  to get: 

= E [(AX t BLI) Y'(u)] -E [AX t f34 E [Y'(o)] 

= A(r )  C d t  - a) .t B(r) c,, (f - a) 

1 67 

(4.1 18) 



The above equation was obtained by using Eq. (4.95). Since v(t) is indepen- 
dent of both ~ ( a )  and X(a) for a < t .  Thus, Cvy(t - a) = 0. On the other 
hand, the derivative of the right-hand side of  Eq. (4.1 17) yields: 

+ C(t.t) Cy(t - a) (4.1 10) 

However, the left-hand side of (4.1 19) after denoting Z(t) for C(t)X(t), can be 
written as: 

5 J' G(r.o)Cy(o - a) cia 

(4.1 20) 
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Now, using Y(r)  = at) X(r) t u(r) = Z(t) + u(t) and the fact that Cvu(f - a) 
= 0, following Eq. (4.1 19). we can obtain: 

Cz(r - a) = E [Z(t) Z'(a)] = A(r) Cxy(r - a) 

(4.1 21) 

Now, if we combine (4.117). (4.118). t4.119), (4.120), and (4.121), we 
obtain: 

1 t J k(r)C(r,u) - !y - G(t,t)A(t)C(r.u) Cy lo - a) do = 0, ro Qa < r 
'n 

(4.122) 

Then, from the dbove: 

A(t)C(t,o) - - G(r.t)A(r)qr.o) = 0. ro Q u Q f (4.123) 

Since 

2(t) = J' i a r ,  0)  Y(a) do 

' 0  

for the optimal solution, combining this with (4.123) yields 

; P' a 
# -  -G(r,a) Y(o)do t G(t,t)  Y(t) 

Jto at 

(4.124) 



Thus, 

This part of the proof is done. 

I t  can be shown (left as an exercise) that: 

and 

w’lere 

We can also obtain Cy(u - a) as: 

C,(a - a) = E (Y(c\ Y’ (a ) i  

(4.: 26) 



G(r.0) Cr(o - a)du = 

C(t.f) L(f) = E {  [X(f )  - 2(f)] Y'(t) 1 = Cex(Olf) c ' ( f )  

If we let 

and since t - ' ( t )  exists (assumed to be yodtive definite), we can obtain: 

FJf) = G(1.r)  = qf) c " t )  L- ' ( f )  (4.128) 

The only thing needed in the proof is to solve for et). From Eq. (4.125). let 
us solve for e(r)  or. equivalently. 4rlr). 

Let $ ( f ,  r )  denote the transitim ma!rix 0: (4.1 25). then 

Substituting 



in the a h ,  then, with lhe amnnption that 40) and U(s) and 4s) are 
uncorrelated, we obtain (after some manipulation): 

Thus, upom ddTereafiation, we obtain: 

where we have used 

in the above. 

Now, if we substitute F,(r) from (4.128), we shall obtain the mdt, k, 

which completes the proof. 

Pmrmk 7. Let the gain F,(t) be changed notationally to K(t) and the gain 
F,(t) to fit).  Then, Eq. (4.100) can be rewritten as: 

i = v(t) - K(t )  q t ) ]  g(t) + K(r) Y( t )  

= A(r) at) + K(t) [ Y(t)  - C ( r )  & f ) ]  (4.1 29) 

4.10.2 Prediction 
The solution of the prediction problem is a simple extension of the filter- 

ing problem, and it is actually presented hy Kalman in his initial paper. 
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where @(-.e) is the W t i c m  matrix c o m q m b g  . to Eq. (4.100). 

The comrhce matrix is f d  racodiogly. Therefore, for prediction prob- 
Itms, we must first obtain a Mtered estimale of thestate, up t o the  range of 
*datk 

Thus, u(x) shouw be set equal to zero for X > ?. and p(f )  serves as the 
initial condition m Eq. (4.90). 

4103 fhoomng 
In smodhg 0 < tI < t ,  where it is desired to estimate X(t,). given the 

observation over the i n k e d  O Q  1 Qt .  smoothi is fa* more complicated 
than either fihetiqg or production. We shall not discus the smoothing prob- 
lem here. The condunioa given by Eq. (4.1 18) does not hold for mouthing 
ttecause for I ,  < r ,  we do not know that X( - )  and ye) are uncorrelated. 
which was a s m d  m filtm and prediction. 

4010.4 ~KsbnanRewrsiveEstinrstkn 

In Subsections 4.9.14.9.3, we have discussed the continuous model repre- 
senting the continuous random pnmnej. We shall begin the discussion of 
discrete-time version of the problem since the discrete mfion must be utilized 
for mnpvter implementation. There are a number of inherent advantages; for 
example, the discrete algorithms can be manipulated by h d  and the step-by- 
step process@ of information lends itself to a simple development. 

In what follows we shall discuss predicuon. filtering, and smoothing. 

4.103 onestep- 
Consider the discrete dynamic system: 

(4. I3 I )  

(4.132) 



EWA) = E*(rt) = 0 (4.1 33a) 

arhere X. E, E @, 
nspectively. which are io p e d  a f d o n  ofk.Thequaatity A(k2 - A , )  is 
defined a!4 fdatm: 

i are R x m, q x L p x p ,  q x q matrices. 

1, i fk ,  = A 2  

0, Otherwise 
(4.134) A(A2 - A , )  

Q and L atp assumed to be positive defd te .  

The initial state X(O)_h ~sglllxd to be a random vector with a known IS 

pri& cavariance matrix 40). 

We would like to f d  the est;mate of the vector X(A t 1) denoted as 
&k + I), whkh is a linear funrtion of Y(O), Y( I), - . - , Y(k) minimid ng: 

where W is any positive semidefinite matrix; for example W = I is a proper 
choice, and it can be shown that the optimal solution is independent of the 
choice W. 

The solution to this problem can be obtained by conjecturing that the 
estimator has the form: 

a k  + 1) = Fl (k) ?(k) + F(k) Y(k) 
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where the matrices F, and F will satisfy the relation: 

where a k )  is defined by: 

It can be shown that the matrix f i k )  satisfies the following equation: 

If we rewrite equations (4.136) - (4.140), we obtain: 

3(k + I )  = [T- F(k) F ]  ?(k) + .r(k) Y(k) (4. I4 I )  

F(k) = A i k )  F'[iF(k) C' t q-' (4.142) 

We must provide the (I priori conditions Z(0) and eo).' The problem of 
predicting more than one step is a simple extension of the above. For exam- 
ple, &k + J] for j > I ,  can be obtained as: 

&k t,] =AI- '  f ( k  t 1) (4.144) 

and the associated covariance matrix is found accordingly. 

4.10.6 Discrete Filtering 

The filtering problem is the determination of the estimate of X(k)  given 
the ohpervations Y(O), Y(1). . . . , Y(k) .  Let us d e m c  the filtered value of 
X(k) by ?(k). I t  can be shown that ?(k) is giwn by: 



where ,?(& t 1) is determined from (4.141) - (4.143). By utilizing these qua- 
tims we obtain: 

(4.146) 

which is the solution to the optimum fdter. 

4.11 COIIIIBINATION OF UNBIASED ESTIMATORS 
Suppose we are given two unbiased estimates g,(r) and f ( I )  of the same 

state X(r). There BR two cases to consider: either 8, and < are correlated 
or they are uncorrelated. We shall discuss both cases below. 

4.11.1 The Estimbs are Uncomlated 

3, and are said to be uncorrelated if 

E [ X -  %,I [ X -  4 ] ' = 0  

The optimal estimate of X is obtained as follows: 

R =p(p;' XII t Pi' 2*) 

,- = (Pi1 t P;1)-1 

where P, is defined for i = I ,  2 by: 

Pf = E(X - Q ( X  - 2,)' 

4.11.2 The €stirnates are Carrelated 
The solution for correlated estimators is gilten by: 

(4.147) 

(4.148) 

(4.149) 

B = L,  B1 t L, (4.1 50) 



P = L,P,L; + L ~ P ~ L ;  + L,P,,L; + L,P,,L; (4.15 I )  

PI, = E[X - fl I [x - g2]’ 

Both proofs are simple and are left for the reader to verify. In the next 
chapter we shall apply the estimation theory developed here to two  
dimensional signals and images. 



4.1 Given X, .  X2 . .  . . X,, as random variables such that: 

E(X i )=m and vBr(Xi)= at 

Assume that Xi - m and X I -  m a E  orthogonal fori+ j .  Let 

aQd 

be estimates of m and a. 

(a) Detennine whether or not & is unbiased. 

(b) show that 

Hint: First prove that 

n 

n ( e - m ) = c ( X i - m )  
I= I 

(c) Determine whether or not ii2 is an unbiMd estimate of 0’. 

4.2 Let the random vanables X ,  and X2 be such that: 



with 

(a) If X = (XI, X 2 ) ,  then show that: 

CmX = (m2,m2) 

(b) Showthat€(X:)=E(X~)=o'  + m 2  andE(X,.X,,=m2. 
(c) Obtain the covariance of X. 

(d) Obtain the ms.e. of m from the data (x ,  , xz). 

(e) Determine the conditions such that your m.s.e. in part (d) is un- 
biased. 

4 3  Let R ( t )  be the autocorrelation function of a process X(r). Suppose it is 
desired to obtain the linear ms.e. of X(t + X) for some X > 0 in terms of 
X(r), X'(t), and x"(t) Le., ?(r + X) = u, X(r)  + u2 X'(t) t u3 X"(t). Use 
the orthogonality principle to determine the optimyn estimate of ?(t + 
A) and determine the m.s.e. of the error X(t + A) - X(r + A). 

4.4 The zero mean random variable X is to be estimated in the linear mean 
squa? sense by the random variables Y, * Y 2 ,  . . . , Y, each of mean zero. 
Let X be such an estimate. Utilizing the orthogondity principle: 

(a) Show that Qe2) = E[(X - fi2] = E[(X - k) XI. 
(b) Obtain the optimal solution 8. 
(c) If em is the error corresponding to the optimal solution, i.e., em = 

X - 2, then verify whether or not 

det 1 E 
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4.5 Let Y(r) = s(r) + m(r)  be given such that Et@) = Es(r) = 0. 

(a) Use the orthogonality principle to  estimate i ( r )  = (d/dr)s(r), and show 
that the optimal estimate (unrealizable) ?can be obtained from: 

where 80) is the optimum impul~e response. 

@) show that 

Hint: Sjy(o) = joSBy(w).  

(c) Given R,(T) = exp (-I TI) or S&) = 2/(1 t 0') and RJ7) = 2 8(7), 
obtain an optimum estimate 3 with the constraint of realizability 
imposed. 

(d) In part (c) design an optimum realizable predictor at t 1). 

(e) Design an optimum realizable fdter for 

The answers in parts (c)-(e) can be left in the frequency domain. 

4.6 A model is generated when white noise with the variance of unity (unity 
spectral density) is passed through a system with the transfer function 
I/[& + I)] .  The model is also contaminated with white noise n(t)  $th 
S,(O) = 1. Assume that E(s(t) n(t))  = 0. Find the transfer function H(s) 
of optimum estimate that will yield the best m.s.e. Also obtain the trans- 
fer function of the best m4.e. of the derivative. 

4.7 Consider the RC network given by: 

R 
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where the unit impulse response k(r) is given by: 

1 
h(f) = a e x p  (-r/a!), with a = RC 

Let the input to the filter be y(t) g i v ~  by: 

U t )  = s(r) + 40 

where s(r) is given by: 

with the random variable 8 distributed uniformly over [0,2n]. The ampli- 
tude A b constant, and n(r) is a zero mean white noise with its power 
spectrum given by 

S,(o) = N (wattslkz) 

(a) Calculate the input power spectrum. 

(b) Calculate the input power. 

(c) Calculate !he output power due to the signal only 

(a) Calculate the output power due to the noise only. 

(e) If the signal-to-noise ratio (SNR) is given by: 

Output power due to signal 
SNR = Output power due to noise 

then obtain the maximum SNR. 

4.8 Let Y(r) be an observation given by: 

Y ( t )  = s ( r )  .t n(r) 
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where 

(a) Find the aptimum predictor ar +- A) by finding the corresponding 
optimum impulse response without the constraint of physical realiz- 
ability. 

(b) Repeat part (a) with the ccmnstraint of realizability imposed. 
Hint: you may need to use 

1 + k2s4 = (1 t + ks2)(l - m~ t ks2)  

You may leave your answers in the frequency domain. 

4.9 LFt X be a scalar random variable and 2, and be two correlated 
cnbiased estimates of X with associated variances (covariances) ut and uf , 
respectively. Let p denote: 

and u2 denote the variance (covariance) associated with X, where 8= 
2, + O f 2 .  

(a) Show that Q t f l  = 1 and derive an expression for u2 in terms of ui, 
u i ,  p .  a, and 8. 

optimal. 
(h) Obtain the optimal estimate 2, i.c., determine a and 0 such that 2 is 

4.10 Let a system be described via the model: 



and 

where 

E[U v'] = E[v  v'] = / 6 ( r  - 7 )  

Note that U and v are vectors. Write the appropriate equations for the 
optimal estimate. What is the error covariance matrix? 

4.1 1 Suppose it is desired to estimate a constant which is unknown; a system 
model may be given by: 

where 

E[v(r)v(?)] = Q b ( r  - 7 )  

Obtain a closed form optimal solution. 

4.12 Repeat problem 4.1 1 if the state Diode1 is changed to: 

- 1  
2 k a - x + U(t )  

and Q = !/4, E[U(t) U(7)j 28( r  - 7). and E[Vv] = 0. 

4.13 A scalar discrete random process X(k) is given by: 

X(k .t 1)  = 0.5 X ( k )  + U(k) 



where U(k) and v(k)  are white noise terms such that: 

ElVZ(k)] =E[V2(k) ]  f 1 

Also assume that: 

EX(0) = 0 

Elx(o)]2 = I 

I t  is obvious that the Kalman estimator (one-step predictor) is given by: 

.?fk + I )  = 10.5 - F(k)] i(k) + F(k)  Y ( k )  

4 0 )  = 1. f(0) = 0 

Suppose Y(2) is not ieceived, then perform the following: 

(a) novide the correction (or the adjuitnient) necessary in tlie above 
Kalman estimator to account for Y(2) cot being received. 

(b) Calculate the loss in terms of estimation error variance associated 
with 2(3) in part (a). The error variance is denoted by 4 3 )  .md is 
giver. by: 

E(3)  = 8 3 )  - 0 3 )  

where p ( 3 )  is the covariance with the observation Y(2) missing. 

(c) Calculate the steady-state cuvariarwe 



CHAPTER 5 
MODEUhlG OF TW090MEIUSIOhlAL 
SIGNALS WITH APPUCATiOY TO 

IMAGE REST0RATK)h 

TIUS chapter considen hrgc classes of those two-dimensional images that 
are best characterized by statistical procedures. such as specifying their first 
two moments (mean and correlatbn) which rwresent the brightnea level of 
thr signal (image). Although. m theor). classical i m g  c i h m w e n !  does not 
seem to be vccy diffiult, th: implementation of every clssicil technique has 
a drawback because it is nwlrcursive and is seriously hampered by the pre- 
sence uf noise. Atteclpts to construct twodimensional recursive filters :rsmUy 
jail because of numerical stabilitv problems. 

Wwn the image has been contaminired by random mise and the only 
infomaticti concerning the image is of 3 .rtist'-.al nature. imqe enluncen :%nt 
is a problenr o f  statistical estrrmtior and filtering. Nahi and Asseti [ I  I ]  and 
ksefi 1121 and (131 &velt)ped a recursive procedure t o  cstinwte thc con- 
taminated image. where the st,ckticd shancteri/Aion I d  the imp 1 t w w  
dimoisiond signal) is dssunlcd to be spatially s tdi tmy.  Kent. ti;c imap is 
scanned horiri)ntally. and the trao .linlensional correlation functions are con- 
vclted into tmedi:nensicmd correlation functions via .tn opttid scanner witli 

cmttput desipatcd as ~ 4 t h  The autcutxrclation function ,d s(/) IS ncWA3- 
timsry sod n m c c p r  5le 1141 becai * of tht scanncr'~ prriodic movenwnt. 
Thus. no Enitc dimensionl time-invariant dyn3n+ nioW rcprcsenting tlw 
stmstiLx of I t )  exists :4.1 SI. 
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The nonstationarity can be remedied by generating another  tati is tical prw 
cess wluxe autocorrelation function is stationary and which approximates the 
autocorrelation function of 41). The results of this technique are satisfactory. 
!ha we shall be dealing with the question of realization of autocornlation 
functions and thus spectral factorization, a brief backgromd of spectral fac- 
torimtion is given. 

Nahi and Franc0 1161 scanned the picture several lines at a time and 
derived a vector model which led to a sir. +r mcursive estimat-r than those 
of [ I  I ] and I 121. However. it does not taAe advantage of all the information 
available from che image. In other words, the estimation of a given set of lines 
does not depend an the data received from the previous lines. Irter. h e l l  
and Silverman [ 17) viewed the problem in a different li&t and rederived Nahi 
and Franco's results. 

Next. we mall utilize a better aproximation to df) (scarier's output) or 
its autocorrelation function dewloped by partitioning the imw into a collec- 
tion of vertical rtrips and approximating 4f) by a series of stationary random 
pnwmscs, one associated with each strip. For ea& stationary spproximation. a 
corrcspomhng linear time-invariant dynamic model is constructed. A procedure 
for mcursivcly enhancing a degraded image is developed in a manner similar to 
thc case diere the image has no( been partitioned. The major difference is 
that rather than utilizing one dynamical model corresponding to one autococ- 
da t ion  function, a chain of dynamic d d s  corresponding to many auto- 
correlation functions is cunsidewd. Examples JR crmstructed to shtnv the 
effectiveness of the enhancemat process. 

The concept of spectral factorization has becume increasingly more im- 
portant since Wiercr's origjnal work 1181 on the subject. Basically. spectral 
tactorization determines the equations that descrik a linear system when the 
system is driven by white noise and !he covariance of tire output is known. 
W h c i m e r  the covariance function o f  a process is driven by wh:te noise via a 
sytten. of d i f i e rend  equations of fint order. we refer to this system as a 
dynamical model. More specifically. +en L covariancy i u n c k n  Rtr. r ) .  where 

ti and r < r ,  ic>r srn? tixed iI ,,id r l .  the factorization problem i s  t o  
determine a realirahle linear filter (diiterential equation mcdcl b that. when 
driven hy white noise. yields R(r. r )  as i t s  output covariance. 

I t  is w d l  kncwn. 1 151 and [XI. that. in general. no such rediratitn ma) 
east. tk)wwr. if i t s  cxistencT were guaranteed. the rcprt-sentation (in sonw 
sense; would be unique. In i ts  most popuiar fot 11. the spectral factorimtitni 
would be contincd to  stat itma! y situations Then the corresponding (1) n;iiiiical 
niodel un&r cc.nsidemtit)n would bc trmc.riivanant. and tlic white noix i g m -  
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@ hracticln must have started inhitely in the past. This dyoemical moded 
would be asymptotically stahle. It is also desimbk to deal with fmite 
dimeosional dpanrical mode&,implyiag that each linear model must possessa 
rational bilateral laplace d o r m .  We can summarize the ebove discutsion 
by the statement of Theorern1. which we sball not prove, but which is 
proved ia reference [ l ] .  

- 1  

A aecensary and a oufficient condition that a stationiry process y ( f )  be 
-table as the output of an asymptotically stable. time-invariant, finite, 
dimensid linear model is that its spectral density R(s) be a rationxd function 
of the form lf(spf(-s). with 

i=0 

with all roots m the left half part OF the s-plane and 

with degree less than or equal to n - 1 and all roots in the left half of the 
s-plane. wheie ai and fli are the red coefficients. Thai is. Ms) has all of its 
poles and zeros in the left half of the s-plane. 

5.2.1 OasnninatiiattheOutputCovarianoeFroma 
UneatDynamicalMOfhl 

Consider the following dynamical model. given by: 

(S.2) 



arheRx(r)isannX Ivector,wispamX Ivector.yisasealar,A,B.andC 

Mr) is a ter~~lie(~11 white noise vector, such that: 
are matricss of appropriate clhasmm (not neoessarily time-imeriant), and 

antere K is an m X m symmetrical matrix and printe denotes the transpose. 

It is desired to ra idate  che output combnce (an autocodation, since 
fit) is of zero mean) Ey(r)y(r), given by: 

&jr(t)y(r) = C( t )  Er(t)x'(r) C'(r) (5.4) 

l e t  the random variable x(to), where to is the initial time, be s tar is t idy  
independent of dr). It io 4 known that the solution of x( r )  is given by: 

where 4(t. r) is the state transition matrix; Le., 

Substituting x(t) from Eq. (5.5) into (SA) and performing m e  nathematical 
operations, we obtain IZO] : 

where I(r) denotes the unit step fuaiiion. 
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From the dynamical model (Eq. 5.2), PJt) can be shown to  be the solw 
tion of the differential equation [20] : 

(5.10) 

where the covariance <(to) must be given. 

52.2brdependanceofEsthathPmbkmda 
Qarticulat-w-m 

In spectral realization, At), given by Eq. (5.2). is the signal without any 
noise contaminaum. Often, we receive a contaminated observation 41). given 
by: 

where n(r )  is ac'ditive nube, which is assumed to be uncorrelated with At). In 
[20] it is shown that the only information necessary for recursive estimatiola 
is the knowledge of €At) At t T) and Ez(t) z(t t T) That is, the solution ot 
recursive estimation in the meanware  sense is independent of the particular 
coordinate system far model 40) and u(-) processes; hence, a L nique solution 
associated with minimum mean-square estimation can be obtained where the 
models for the processes are not given in advance. All these models are related 
to  one another by a lincar transformakn. For example, if 

i = Ax(t) + BLc(t) 

(5.12) 

and 

x' = A*x*(t) + B*u*(t) 

correspond to the same realization, then there exists a linear transformation 
nt) such that: 

(5.14) 



and 

x" = q f ) 2 ( f )  ($.IS) 

where x̂  and 2' are the estimates corresponding to Eqs. (5.12) and (5.13), 
respectively. 

"he covariance estimates can be obtained accordingly. 

53.1 Pmcedumoutfine 

The enhancement of images that are characterized only by statistical data 
where the picture rwntains additive noise is considered in this section. The 
random process representing the output scanner is characterized by the output 
of a dynamical model with white noise imut. The dynamical model describes 
the first-order vector Markov process. ?he procedure of Kalman filtering is 
then utilized to recursively determine the minimum nxan-square error 
estimate of the image. The result is also extended to obtain the smoothing of 
data. Two examples, one with very high SNR are used to illustrale the effec- 
tiveness of the procedure. In what follows, the image is assumed to be a 
two-dimensional, stationary correlation function of zero mean. Thus, the auto- 
correlation function and the covariance becowe identical. The statistical in- 
formation about the imsge and the noise is assumed to be known and uncor- 
related, and the noise is additive. 

5.3.2 betivatbn ot AutocomWon Function of 
scanneroutput 

Let us scan a picture horizontallv using an opticai scanner denoted by H t ) .  
Let the horizontal position (a continuous variable) be denoted by I. where 
0 < z <Z. and the vertical variable by an integer tt = 1.2. . . . . :V representing 
the nth scanned line. The brightness function is defined by b(2.n). Let us 
assume. without ~ . i y  loss of generality that M2.n)  is of iero mean. The 
random process b(2.n) is assumed t o  be wide-wnu stationary. with the auto- 
correlaticm function defined by: 

Assume that the scanner output s ( t )  has i Iiorizontal sp.ed I' = I md. 
without any loss of generality. that the verticil I I I ~ V C I I I C I I ~  hhes Len) time. 



Let us determine E@) s(t + r )  in terms of R(z,n) and 2 The variables t and T 

can be equivalently expressed by: 

t =IT + a, j = 0 , 1 , 2 : - . . N -  I ,  O Q a Q T  

r = i T + y .  

0 Q I + r Q NT, 

i = . - .  , - I ,O,l. - * - 

O Q r Q T  

(5.17) 

I 
where T = 2 is the time required to traverse one horizontal line. The scanner 
output can now be written as: 

b ( i r + y . i + j t  I), 

if a + y Q T 

Ma + y - T.i t i  t 2). 

if u t y > T 

4t) = Ma, j + I) .  s(r t r )  = 

(5.10) 

Now. utilizing Eqs. (5.16) and 5.17). we can obtain: 

(5.19) 

I t  is clear that Ed/ )  s(r + r )  is a function of both a and y. or. equivalently. 
d r and t: thus. it must be nonstationary. The nonstationari~g is  due to the 
edge condition. A simple check shows that Es(t) d t  t r )  is also periodic and a 
nonseparable function. It can he demonstrated that no ' ?i:e-dimencicmal 
linear realization of this nonseparable a~tocorrelation exists. 

We shall now seek to generate a random process denoted as q(r) such that 
i t  has a stationary autocorrelation function which approximates the 3uto- 
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conelation of the process s(1). To generate 9(r). we proceed as follows. For a 
given r ,  At) i s  defined by: 

where t is assumed to be uniformly distributed over 10, T]. We sh.11 now 
prove the following theorem 

'Ibeorem 2 

The random process 9(f) defined by Eq. (5.20) is stationary. 

Roof 

It 3 easy to verify that: 

E9(r) = 0 

by the construction of 9(r). 

Next. we must prove that Eq(t) 9(t + T) is a function L~ T (or, equiva- 
lently, 7) only. To accomplish this end, we calculate the correlation fumion 
of the process dt): 

This equation is obtained by utilizing Eq. (5.14t and 7 IT +y .  which is 
given by Eq. (5.17) and the fact that F is uniformly distributed over 10. TI. 
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The subscripts s and 
1. respectively. From Eqs. (5.19) and (5.21). one obtains: 

in (5.21) denote the expectation with respect to s and 

R(T- 7 . i +  I ) &  1 

where Eq(t) q(c t T) is defined as dr), which is a function of ;  (or 7 )  only. 

It is interesting to note that the correlation function of q(f), namely, d ~ ) ,  
can also be obtained by averaging the autocorrelation function of s(r) over one 
period. However. it is important to mention that such averaging over the 
subintervals of a period may not give rise to a stationary autocorrelation 
function, and, furthermure, may not yield an autocorrelation function at all. 

As an example, consider a scalar nndom process characterized by a scalar 
differential equation: 

i = - x + u  

fit) = cos (;) x ( r )  

where the initial state x(0) = I/:! and 



Then, the autocorrelation of x(t)  can be obtained as follows: 

1 
2 Ex(r) 4 1  + r) = -exp (- 171) 

Thus, Ey(r) y(r + 7)  is given by: 

1 Ey(t)y(t + I )   cos ( t )  cos ( t  t r) exp (- I r l )  - 
which is clearly nonstationary, sin-e the correlation function of y(r) depends 
on both t and t + r  and is periodic (of periodicity 217). However, if we 
averaged this autocorrelation over [O.n/4], the resulting average would depend 
on both t and t + r. 

The randomization of 5 over the period T has the intuitive appeal that all 
points of the picture are weighted equally. 

The folio\ in? salient properties of r(r) will be used in what follows: 

417') = R(0, i) (5.23) 

Since R(z,  n) is an autocorrelation function, 

R(0. n) 2 R(z, n) 

Thus, from (i.22) and (5.23). 

(5 24) 

( 5 . 2 5 )  

The above properties indicaie that. in general, the correlation function 47) has 
a periodic nature. 

Example I 

Consider a square picture subdivided into a 32 X 32 grid. Let T =  1 second 
and v = 1 .  The signal is a 12 X 12 square starting at the 13th row and 13th 
column. Let m and n represent specific rows and columns, respectively. The 
a h v e  signal is represented by the brightness level b(m, n) = 6.1 where the 
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signal exists and - 1 otherwise, resulting in a zero mean sample functinn. As a 
first approximation, let us choose: 

where a, p,,, and pv are to be determined. Computation of 'be sample power 
results in a = R(O.0) * 6.1. The correlation between two adjacent grid points 
is calculated as 5.33. which is a value for R(1/32,0) or R(0.1). Hence, 

R(x, i )  = 6.1 exp (-4.35121 - 0.1351il) 

The correlation function is obtained by substituting the above into L.,. (5.22). 
and the plot is shown in Figure 5-1. 

-1 1 2  

Fig. 5-1. Plot of r(r) and ra(r) (Dashed Curve) as a Function of T 

5.3.3 Dynamical Modeling of Image Statistics 

In this section. we \\ish to derh- a differentip! equation model whose 
solution has . ' I  autocorrelation function arnroximatinp T(t) given by 
Eq. (5.21). Sin.. we subsequently intend to u t i l i x  ,I Kalman estimator. we 
seek 3 dynamical model of the form: 

where .r(f) is an ir-dimensional vector, r d r )  is ;I white noise vector. and y ( t )  is 
the scalar signal whose autocorrelation function is dr). 
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The procedure followed is to represent an approximation to  r ( ~ ) ,  denoted 
by ro(r), as a sum of terms such that each term can be easily modded, since, 
in general, r(r) may not have a rational bilateral transform. The properties of 
r ( ~ )  may be utilized to decompose r(7) into the product of two functions h(7) 
and r(r)/h(~): 

(5.27) 

where h(z) is chosen to satisfy: 

h(.r) = R(0. i). for all i (5.25) 

Since in many practical cases the two-dimensional correlation function 
R (2, i )  is a monotonically decreasing function of i ,  a natural candidate for 
h(7) is, in those instances, a combination of negative exponentials; i.e., 

(5.29) 

The function p ( r )  is then chosen to be a periodic function approximating 
r(7)/h(7). The approximate correlation function is: 

Utilizing Eqs. (5.23) and (5.28), it can oe seen that the function r ( ~ ) / h ( ~ )  is 
unity at iT and less than unity for all other 7 ;  furthermore, from (5.29,) and 
(5.29) it is an even function. Hence, p(7) is chosen to be an even function 
with period T. Thus, a natural candidate for this function is: 

2nj J 
p(7) = E u, cos 7 

/= 0 

(S.31) 
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Consequently, an element of the function rU(7) has the form: 

I 5.32) 

and there are (J  + I )  I such elements. 

A differential equation model with wM:e noise input can be simply con- 
structed [8] to model each of these terms. Each will be a second-order system 
except for those corresponding to J = 0; Le., 

li a,, exp ( -+ Id )  

which will t e  of first order. If the white noise forcing functioris (one being 
necessary for each i, j pair) are chosen to be mutually independent, tile collec- 
tion of all these differential equations defines the parameters A,  B,  C and 
represents the desired model for rU(r). 

In the course of selecting the approximate function rU(r). we must choose 
the coefficients properly, suck that ~ ~ ( 7 )  is a correlation function. We shall 
either guarantee that ru(*) is a positive definite function or, equivalently, that 
the spectral denity of ra(7) is positive 191. 

Example 2 

desired model has the form given by E\. (5.26), and fiirther that: 
Using Examp!e 1, let us derive a dynamic midel for r(7). Assme 'hat the 

Eu(r) u(r t 7))  = K ~ ( T )  (5.33) 

where 6(7) is the Dirac dtlta function, the prime denotes the transpose, K is 3 
positiye defidte matrix, an I 

Fv(t)y(r + 7 )  = rJ7) ( 5 3 4 )  

Because I '+e exponential nature of R(z, i). we choose: 

(5.35) 



and 

(5.36) 

In this example, we use the aotation pu irtrtead J f  0.136. 

The niodelinp procedure can be broken down as follows. The first term 
rJr), namely. 

has rhe bilateral transform: 

T:.t function R , ( s )  can now be factored into two functions. H , ( s )  and 
El (-s), where 

and 

Utilizing the m e t l d  of this section. 3 ,‘ynamic rcalization of  H , ( s )  is 
obtained as: 



Rw fmction RJs) caa be f a c t d  out imo two fwctioas. H2(s) d h,, I): 

where H2(s) is given by: 

The correqmdiy dynmic realization of H2(s) is given as: 



In gmral. the (A’ t I )  term of rJf) is flk cxp ( -p , , l r l )  cos ?RAT which 
ha the b i l r t d  tmdt>tm R,, ,(a), @vtn by: 

As befm, the function Rktl(s) can be factored into two functions. HktI(t) 
a d  H k + l ( - ~ l :  

and the corresponding dyn ,icd model is: 



(5.41) 

0 - l(2.t +@:I -at, . 
0 0 0 .  

(5.42) 

I t  can be seen that the first term of ra(r) is modeled by Eq. (5.38). which 
is a fint-order system, and the subsequent terms by (5.39). which is the 
slcondmder system. Thus. to model the ( I +  I )  terms of T ~ ( T ) .  we need a (U 
+ 1)ordrr system. For example, suppose the function ra(i) has (J t I )  terms; 
then we can incorporate the first- and second-order systems into a new sys- 
tem. whosc parameten A,  E,  and C are obtained as follows: 

0 0 . . o  0 1 

0 
I 1 :  0 

0 

0 

0 l o  
c* I I  I 0 I 0 .  " I 01 
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** 3 

resultant re(t) can be written as: 
If in Example 2 only three terms of re(t) are wtained, i.e.. J =  2, the 

2 
rJr) = 6.1 exp - 0 . 1 3 q t ) ~  ul cos 27m 

/=o 

If we use the Fourier series for p ( ~ ) .  then uo. u,  , and u2 vi!l be given as: 

no = 0.333; a, = 0.405; a, = 0.101 

A plot of ro(r) is shown in Figure 5-1. The correlation term 

6.1 uo exp (-0.1361tl) 

is modeled by: 

i, = -0.136 x , ( f )  + 0.732 uI 

The second term in the correlation is modeled by: 

x, = x3 + 0.83, P, 

X ,  = -39.4 X, - 0.27 X, + 4.92 U, 
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and the third term is modeled in a similar manner. The terms u ,  . u2,  and uj 
represent independent white-noise terms. each with zero mean and corelation 
function 6(r), where 6 is the Dirac delta function. The final results are: 

A =  

r- 
-0.136 

0 

0 

0 

0 - 

0 0 

0 I 

-39.4 -0.27 

0 0 

0 0 

0 0 

0 0 

0 0 

0 I 

157.7 -0.27 

0 0 

0.820 0 

4.92 0 

0 0.410 

0 5.04 

0 I O] 

Often, two-dimensional stationary correlation functions can be approxi- 
mated by a combination of two-dimensional stationary correlation functions 
of the form: 

Because of the importance of R(x. i )  3s given by Eq. (5.47). we shall discuss 
this special autocorrelation function below. 
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+-exp(-p*IT- Y yl - p p l i  t 11) T 

where 

Now, let us define a risk function &(e) such that 

and 

(5.49) 

( 5  .SO) 
/= 0 

We can select the coefficietlts a, such that the risk function &?(r) is mini- 
mized. For simplicity, we shall assume that T =  1. It can be shown that &(r) 
can be expressed by [ 161 : 

To mininiize &(r), we must minimize: 



Thus, the minimization of q r )  becomes a simple 'problem, and the risk 
function can be obtained from [ 16). The procedure is to set the derivatives of 
@r) with respect to a, equal to zero, and the result can be obtained as 
follows: 

a = a-'d (5.52) 

where a is a matdx, whose elements are given by: 

and d is a column vector, whose elements are given by: 

I 

Jk = r(r) exp (-pUl T I  ) cos 2nkr JT (5.54) 

Furthermore. the following properties can easily be established: 

(5.56) 

5.3.4 Design of a One-Step Predictor 

model given by Eq. (5.26) is discretized, yielding: 
Since we intend to utilize a digital computer for the estimation process, the 

(5.57) 



In addition, the model given by Eq. (5.57) contains the observation noise 
element dk), which is assumed to be white, with mean zero and variance 02. 

The parameters x, E, and care related to A ,  5 ,  and C by: 

- 
A =  

BEB = 6’” exp (A 2) exp (-As) 5K5’ 

- 
0.996 0 0 0 0 

0 0.983 0.031 0 0 

0 - 1.23, 0.97 0 0 

0 0 0 0.926 0.03 

0 0 0 -4.77 0.9 13. 

X exp (-A‘s) exp (A’ a) ds 

c= C (5.58) 

where K and are covariances of u(f) and u(k), respectively. The sampling 
interval utilized in the above discretization is chosen to be TIN. Thus. there 
will be N observations for each horizontal scan. Since there are N horizontal 
scan lines, the find discrete observation is on an N X N grid. 

Example 4 

Continuing Example 3, we obtain: 



0.02 0 0 0 

0 0.02 0.12 0 

0 0.12 0.60 0 

0 0 0.0 1 0.07 

,o 0 0.07 0.49 

C ' = C = [ l  1 0 1 0 )  

Utilizing the model given by Eq. (5.57) with parameters given by Eq. (5.58). a 
(one-step predictor) recursive estimator may be designed (see Chapter 4). The 
equations a x  given for the sake of completeness. 

P ( k  t 1) = [Z - f l k ) C ]  P(k) [X- F(k)C]' +BE' + F(k)F'(k) U* 

The (one-step predicted) estimate of the image is. therefore. 

thal is. .c((k) is the best estimate of y(k) ,  ohtained recursively in real time. 
where y(.) is the observation associated with the grid point immediately 
ahead of the scanner position. 

Example S 

The signal y ( k )  is generated by using the image described 111 the preceding 
example and adding white noise with variance u2. Let us tleline 3 meastire of 
signal-to-noise ratio by: 

p & peak-to-peak _. .~ ..... variation . ~ - of signal ._ 

0 
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The peak-to-peak 'xiation of the image is 7.1. Two values of p are considered 
here, namely, 7.1/3 and 7.1110; the corresponding values of y(k) and their 
one-step predicted values y(k) are shown in Figures 5-2a and 5-2b and 5-3a 
and S3b, respectively. 

5.3.5 Implementation of Required Interpolation 

I t  is clear that image enhancement. from the point of view of scanner 
output. represents an interpolation problem; i.e., it is desired to determine the 
best estimate of y(k).  0 Q k Q N, given the observation y(O),.A I). . * . , y ( N .  
In general, the interpolation problem is far more complicated I IO] than stan- 
dard Kalman filtering. However, since for the image enhancement considered 
here the length of the data is fixed (N) and, furthermore. the observation is 
usually available for additional repeated processing, it is possible to obtain two 
one-step predicted values of y(k) ,  denoted by F(k)  and X k ) ,  one by running 
the scanner in one direction starting, for example, at the top left comer of 
the picture and the other by running the scanner in the reverse direction 
starting at bottom right comer. Associed with these estimates are estimation 
error variances denoted by S2(k) = CP(k) c' and # ( k )  = mA) c' , respec- 
tively. The two estimates must be combined to yield the optimal interpolated 
(smoothed) value y*(k).  Thus. a brief discussion of combining two estimators 
is warranted. 

Suppose we are given two state estimat-s, .?(f) a i d  X(f), of the same state 
variable x(t).  There are two cases to consider: either ;(f) and qf) are corre- 
lated or they are uncorrelated. We shall combine only the case in which both 
are uncorrelated; Le., 

E l x - 2 1  [ x - X ] ' = O  (S .hO) 

In h s  case the optimal estimate of x, denoted 3y x * ( f ) ,  is given by: 

where P^ and P are the error covariances of x̂  and Y. respectively. Thus. 
applying Eqs. (5.60), (5.61), and (5.62) to obtain +?(IC) = & and 7 = 
yields: 
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Fig. 5-2, Obaervat 
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vals of [O,T]. Intuitively, it can be seen that the more the number of subdivi- 
sions. the closer we approximate the correlation function of the scanner out- 
put. Thus, we shall subd;vide the imase in the manner given below. 

Let us subdivide 10. T ]  into A I  parts such that: 

0 = To C T ,  < Tz C . . .  < TM = T (5.65) 

Let A,, be defined as: 

A,, & T,, - T,,-,, for q = 1.2.. . . .M (5.66) 

Now for given t = jT + u. where u E IT,- ,. Tl, in a mariner to thr;t before, 
let q,(r) be a random variable such that: 

where f is assumed t o  be uniformly distributed over IT,,-,,  T,,] for 1) = 
1.2, . . . , M and q ( t )  is i*ot defined elsewhere. Now we shall prove the fol- 
lowing theorem. 

Theowm 3 

r) 

The random process y , ( t )  defined by Eq. (5.67) is stationary. 

Roof 

I t  is easy to verify that. 

by construction of 9n(t). 

Next, we shall prove that L'4q(t)4,(t t 7 )  is a function of 7 f o r ,  equiv- 
alently. y)  only. Eq,(t) q,,,(r .t 7 )  can be calculated as follows: 

where (see 5.17): 



(5.71) 

where Aq is defined by Eq. (5.56). Hence. the entire picture consists of the 
dlectian of partitions S,. S2. . . . .SM. as shown in Figure 5 4 .  

Let e(r) be the oburvatiori giwn by: 

"(t) = s ( r )  + v ( 0 ,  I E s, 
202 

(5.73) 



--s - 1 
0 - s  + 

2 
t S  -c M 

&re u(t) is the white mise of zero mean and variance 2. NOW we can state 
a very imponant result via a theorem. 

Theorem4 

The sccond-order statistical information of Jct) and B(t) for t E SI is suffi- 
cient for obtaining the best linear mean square estimate of s(t) denoted 3s 
qt). given the Observation O(t ) .  t €SI. The optirnd dution is unique and 
independent of the particular generating model of signal proess s(t). 

Roof 

Let L(a(rX t )  be the operator delhed by: 



where 4t) b a scalar function. We are interested in minimizing: 

where pr) is restricted to a linear function of the observation e(r), T 6; I with 
both r and t belonging to S,. Consequently. 3f) has the form given by 
b. (5.74). 

It is desired to find that NT), denoted by ao(r), which will minimi= 
(5.75). Using the ideas of calculus of variations IS], let aoo(~)  be any arbi- 
trary function of r and c be an arbitrary small scalar. Letting 

and substituting this in Eq. (5.75) yields: 

(5.76) 

where the expectation is over I and r. 

I f  ao(r) yields the minimum value for Eq. (5.74), then the coefficients of 
the term in e in the expansion of Eq. (5.76) must be zero. since e can be 
choseri small and with arbitrary sign. I t  follows that: 

Or. in the expanded form, 



Since the above equation must be satislied for m y  aoo(r), we must neces- 
sarily have: 

E[s(t)  - ?(t)] O(r) = 0. for 0 < r Q T, 

which is the orthogonality principle. that is. 

E[s(t )  - ?(t)J O(r)  = 0. for r.  t E S, and r Q t (5.77) 

The solution of Eq. (5.20) yields the optimal solution 2f). Equivalently. 
Eq. (5.77) may be written as: 

where 2t) is given by (5.74). Hence. we have: 

which iniplies that the optimal solution depends on the second niotiient 
statistics of s ( t )  and O ( f )  over St only. 

Example 7 

Consider a square picture slihdividect in to  :I 2 2  X 3 2  grid. I et T = 1 second 
~ n d  v = I .  The signal is :I 2 0  Y 10 square st;irtinp froti\ the thirtcciitli TO\\ .itid 

the first coluinn. 1x1 ) P I  ;mil ti represent specilic rows ;ind ccdiuiiiis. r c q w -  
tively. The ahove signal is represented hy the hriglttnr'ss Icvcl h( t t r .  11) = 1 .Cb. 
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when a signal exists. and - 1 otherwise, resulting in a zero mean sample 
function. As a first approximation, let us choose: 

where a, p,,, and p, are t o  be determined. Computation of the sample power 
gives rise to CI = R(O.0) 1.56. The correlation between two adjacent grid 
points is calculated as 1.394, which is the value for R(1/32,0) or R(O.l). 
Hence. 

R(z. i )  = 1.56 exp (-3.441 z l  - 0.1071 il 

Example 8 

Sn is given by Eq i5.72). We subdivide l0.11 as follows: 
Let us partition the above picture into three parts SI. S,, and S,. where 

with 

1 1  IO A, =A,= 32 -- and A, = 33 

Then, Eq,(t) q l ( t  + 7 )  for ' and t + 7 E SI can he calculated hy utilizing Eq. 
(5.70) and is given hy: 

Similarly, Eq2(r)  ~ ~ ( 1  + 7) fo r  t. I t T E S, is given hy: 

Eq2(r)  q 2 ( t  t 7) = 1 .SO exp ( -  3.441 -yl - 0.1071 il 1 
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EqJr) q,(r + r) 
by: 

r, t t r E S3 can be calculated from (5.71) and is given 

E93(t)43(t + r )  = 1.56 exp (-3.44171 - 0.1071il) 

+ exp (-3.4417 - 1 I - 0.107 li + I I )  
A3 J 

54.1 Dynamic Modaling of Image Statistrcs 

Now, for m y  1 < I) G M, we wish to derive a differential equation model 
whose solution has an autocorrelation function approximating Eq,,(:) 4,(t + 
r). We subsequently intend to utilize a Kalman estimator for each I), whenever 
the signal q,(t) is contaminated by additive white noise. But, from 
Theorem 3, the linear minimum mean square estimate $,,(t) is independent of 
the particular dynamic model generating the signal process q,,(f). Hence. it is 
suffrcient to devise any stationary correlation function which matches the first 
hvo moments of q,(t) for t E $. 

Again, without any loss of generality, we let r) = 1. since the analysis 
would be similar for I)> 1. Let the dynamic model 

(S .78) 

be such ?!la1 its output correlation function denoted as $ , ( r )  satisfies: 

whcre x , ( t )  is an rr-dtmensional vector. u(t)  is a white noise vector. and y ( t )  is 
the scalar signal whose autocorrelation function is 9, (I). The procedure fol- 
lowed is t o  present an  approximation to @,(r ) ,  denoted as ~ $ ~ ~ ( r ) .  as a sum ol' 
tcrnis such that eclch term can easily he modeled. The procedure has heen 
discussed; however, we shall repeat i t  f o r  the sake of completeness. 
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Let us decompose #,(t) into the product of two functions #,(r) and 4,(r)/ 
#,(?), where #,(r) is chosen to satis'y b,(iT) = K(0, i )  for all i, and I , (?)  is 
taken to be a combination of non-negative exponentials. Le.. 

The function p,(?) is chosen to be a periodic function approximating 
t$l(r)/#l(t). The approximate Correlation function is then, 

A natural candidate for p , ( t )  is to choose p,(r)  as: 

J 

i=O 

(5.80) 

(5.81) 

Hence, an element of the correlation function p ,  (t) has the fmm: 

2nj 
T Ipj exp ( -Ai l  il ) cos - t 

and there are (J t 1) I such elements. A differential equation model with 
white noise input can simply be constructed to model each of these terms. 
Each will be a second-order system except those corresponding to j = 0. which 
will be of the first order. If the white noise terms are assumed to be ml;tually 
independent, the collection of all these differential equations defines A I  , BI,  
and < and represents the desired model for q51u(?). 

Example 9 

In Example 8, due to the exponential nature of .?(z, i). we choose: 



Only three terms in (5.81) are retained; that is. J = 2. The lesultant is: 

2 

$,o(~) = I .56 exp (-0.1071 T I ui cos 2nj7 
I- 0 

where uo = 0.396, u1 = 0.445, and u2 = 0.0131. The autocorrelation term: 

I .5b0 exp (-0.1071 T I ) 

is modeled by x l ( t ) ,  where 

xl = 0.107~~ + 0 . 3 6 5 ~ ~  

The second term in the correlation @JT) is modeled by: 

L, = x3 + 0 . 3 6 8 ~ ~  

i, = - 3 9 . 4 ~ ~  - 0 . 2 1 4 ~ ~  + 2 . 4 2 ~ ~  

The third term is modeled in a similar manner. The u, ,  u l ,  and u3 represent 
independent white noise terms, each with zero mean and correlation function 
6(r), where 6 is the Dirac delta function. The final results are: 

- 
A ,  = 

- 

O 1  
-0.107 0 0 0 

0 0 1 10 0 

0 -39.4 -0.214 0 0 

0 0 0 0 I 

- 1 0 0 0 - 157.7 -0.214 
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- - 
0.365 0 0 

0 0.3b6 0 

- 
B, = 0 2.42 0 

0 0 0.065 

L O  0 0.834 J 

r - 
0.334 0 0 

0 0.334 0 

0 2.1 0 

0 0 0.1 I 

r) 0 2.65 
b A 

The dynamic model generating the signal process s 2 ( t )  is identical to that of 
s,(r). However, the dynamic model corresponding to the signal process s,(t)  is 
given by: 

where 

A j  ‘A, 
and 

- 
B, = 



5.42 Design of Estimator 
From Eq. (5.70) and (5.71). it follows that two different dynamic models 

corresponding to the correlation functions exist, one for 1 Q k < M and the 
other for k = M. 1.1 what follows we intend to utilize a digital computer for 
the estimation process. The model corresponding to 1 Q k < M is given by 
Eq. (5.78). For k = M, let the corresponding dynamic model be given by: 

(5.82) 

i.e., the dynamic model generates the signal process Ar). Let us assume that 
both dynamic models, given by Eq. (5.78) and F,q. (5.82). are of the same 
dimensions. Discretizing Eq. (5.87) yields: 

In addition, the model given by Eq. (5.83) contains the observation 
(background) noise element v(k), which is assumed to b_e white of Ero mean and 
variance u2. The parameter? A , ,  B , .  C, are related to A , ,  B,  , and C, by: 

A = exp (2, g) 

c, = F ,  (5.84) 

where exp is the exponent, and K, and E, are covariances of u(k) and u(t), 
respectively. We discretize Eq. (5.82) in the same manner. Let 



with its corresponding parameters given by: 

A, = exp ( X, $) 

( 5  36)  

exp (-&s) exp ( z, 5) ds 

Example 10 

In this example, let F(k) denote the estimate of C,x(k) or C#-(k). Every k 
can be written as k = 3 2  t j ,  for i = I ,2,.  . . ,Nand 1 Q j < 32, where i is the ith 
scanned line and j determines the position on the ith scanned line. Continuing 
Example 7-9, we can see that !he start of the three vertical strips corresponds to 
the values of j = 1 * 1 1, or 2 1. For 1 Q j Q 21, we utilize model Eq. (5.83). since 
the values of q would be either 1 or 2. For other values of j .  we utilize model Eq. 
(5.85). Now for the values of j = I ,  11, and 2 I * the best linear mean square 
estimate of y(R) must be the optimal combination ofj?(k) and F(k - 32). where 
b e  two estimates use a portion of the observation twice. However, the 
overlapped portion of the observation is very small, and the optimdity will not 
be significantly affected by assuming the estimators to be independent. 

The formula for combining two independent estimates x  ̂ and 2 of the same 
state variable x to obtain a combined estimate X *  with its associated covariance 
error given by (see Chapter 4): 

p*+’ + 1 ) 4  ( 5.88) 

where P  ̂ and Pare  the error covariances of x^ and 2, respectively, thus, applying 
Eqs. (5.87) and (5.85) to.?(k) = C?(k) and y”(k) = &(k) yields: 
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where yo  denotes the combined estimate for y(k). Continuing Example 9, we 
obtain: 

A ,  = A ,  - - 

B,K,B', = 

B M K 2 L  = 

- 
0.996 0 0 0 0 

0 0.983 0.031 0 0 

0 -1.223 0.970 0 0 

0 0 0 0.936 0.03 

0 0 0 -4.75 0.93 - 

0 0 0  

0 0.01 0.03 0 0  

0 0.03 0.15 0 0  

0 0 0  L: : 0 0 0.01 

0 0  0 0 0 

0 0  0.02 0 

0 0.02 0.1 1 0 

0 0  0 0 

0 0  0 0.02 0.14 

c, = c M =  [ I  1 0 I 0) 

Utilizhg the models given by Eqs. (5.83) and (5.85) with their corresponding 
parameters given by Eqs. (5.84) and (5.86) respectively, a (one-step predictor) 
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of >Yk) and their tmeatep predictors arc shown in Figwet S h a  and 5-hh. 
wspect ively . 

Example I Z 

Sinrv the lengh t.f data is  fixed and the ohsemtion is available for x!ditional 
repeated prmrs.tin2. it i5 pmihle to ohtain two one-step predicted vdwc of 
j l k ) .  denoted xc .?(k) and .qk). ctartins from the top leit comer of the image 
intl the other by running the -3nnr.r in the mvm *lircctiw startinc a i  11.2 
borttjm rich1 comer. ~Ii~h-13t9! uith thw? eairnates are estimation error 
\-3riinrrs drn:jted hy $(k) = Cnk)C" and Z'fk) = C*fik)C'.  mpctivrly. The 
restilt of coinbinins the two estimates fiir p = 1 W10 appears in l'ipitre M c .  

flg. 56. ObsewaNon and Edimates lor p = 2.56116 

5.5 CONCLUSIONS 



We have often seen tilt "delta" function a(x) described as: 

6(x) dx = 1, a(x) = 0. for x # 0 L 
We must point out that 6(x) is not a function, but a mathematical symbol. 
We shall discus the definition of 6(x) hclow. 

lkfinitioa 1 

belong to  class C or. symbolically. @ 
A fwction Mf). which is differentiable infinitely many times, is said to 

C if the foliowing conditim is satisfied: 

Note that &t) denotes the jth derivathe. 

Now we need to define another e!. %ion. 
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DEBaitiaa2 

for any function d t ) E  c: 
'pbt squence of fuactionsg,(t),g2(r), . . . of classC is said to be regular if 

The function gn(t) is of class C and 

However, for any function I# E C, 

is furite. 

IMJlition 3 

Two regular sequence of functions I g , ( r ) )  and {h,(r)) are equivalent if 

We shall denote g, - h,. 
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For example, 

are equivalent. even though the functions are uot equal to each other. 

lkfinition 4 

function g, i.e., 
If the limit of kn(t)) (with respect to a function #EC) converges to a 

then g is called a generalized function and g- kn}. A generalized function 
denoted by u is called 3 unit step function if 

for all classes of {un(t)}, whew 

I ,  if t > 0 t 0, if t d 0 
U ( t )  4 

Example 

The sequence 

represents a generdized unit step function. 
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Definition 5 

?he unit impulse or Dim delta function 6(f) is defmed as: 

m a t  is, 

It should be emphasued that &( f )  is yerely a symbol representing the total 
class of equivalent regular sequences {un(f)}. Hence, 

Example 
, 

The sequence {un(t)) given by: 

is only one sequence which represents 6(f) .  Other sequences are: 

The following important properties of 6( t )  w;*: hold: 

where f is differentiable over the interval a G f G 0. 
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Both equations can be proven from the definition and utiliting the 
integration by part. 
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APPENDIX 8 

VECTOR SPACES AND MATRlCES 

W t i o n  1 

complex field if the following rules are satisfied: 
Let V be a set; then V is called a linear vector space over the real or the 

(1) l f x €  V , y €  V , t h e n x + y E  V 
(2) (x + y ) +  z = x  + 0, + 2 )  

(3) There exists a “zero” vector 0 E V such that x + 0 = 0 + x =x for 

(4) For every x E V. there exists another x- E V such that x + x- = 0 

( 5 )  x + y  = y  + x  for all x andy  € V 

every x E V 

There exists a set of scalars (either real R or complex C) denoted by Greek 
letters such that: 

(6) (a + 8)  x = ax + @ (Distributive Law) 

(7) a(x t y) = M t qv (Distributive Law) 

(8) (@) (x) = am) (Associative LJW) 

(9) 1 ‘ x  = x  

(IO) 0 x = 0 

The most iiiiportant example of the vector space is R“. I t  can be shown 
that a set V is a vector space iff for any x ,y  E V and any scalars a and f l ,  ax 
t fly E V .  
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Ikhidon2 

T be a mapping (transformation) Y 4 W such that: 
Let V and W be linear vector spaces over the same fEld of scalars, and let 

(1) 

(2) T(aor)=aTx for all x E Yand all scalars a 
+ y )  = Ik + 7)  for all x and y E V 

Then Tis said to be linear. 

Definition 3 
Asetofvectors {x,,x2 ..... x,,)isabasisin Vif: 

(1) The sei is linearly independent (no xis can be written as a linear 
combination of the other vectors). 

(2) They generate the vector space V, i.e., every x E Y can be written as a 
linear combination of x, ,x2,. . . , x3. 

Definition 4 

dimension of the vector space V. 
The number of linearly independent vector n in Defdtion 3 is called the 

(1) A(x + y ) =  A(x) + m), for any x and y E V 

(2) A(ax) = aA(x), for any scalar a and x E Y 

I k f i t i o n  of Matrices 

and assume A IS a linear transformation 
Let {e,,e2:. . . ,e,,} be a basis in V and U;,f2,. . . , f m }  be a basis in W, 

Then A(e,) E W for ai. J = I ,2,. . . , n which implies that: 

m 

I -  I 

or in the expanded form: 



Definition s 

defmed as: 
Now the matrix of A denoted by MA with respect to the above basis is 

Thus the matrix [ar l m X n  depends on the linear transfomtion A as well as 
the bases in Yand 4. 

Let A and B be linear transformations with respect to the same spaces; 
then the reader is advised to prove the following properties: 

(1) MA + MB = 10,) + b,,Imxn 

(2) MaA = &A 

where MA and M are the matrices with respect to the operators A and B, a 
is a scalar, and Irj  + bii lmxn is the matrix with respect to the operator 
A+B. 

Ikfition 6 

(1) If Ax = Y for every x ,  then the operator is called the identity and is 

(2) A is a zero operator if Ax = 0 for every x E K 
( 3 )  If V = W, then A is said to be invertible iff Ax,  = Ax, implies x, 

denoted by I .  

x2 a d ,  for every y E V, there exists an x E V such that AX = y. If A 
is not invertible it is said to be singular. 
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Thus, for a 
entries. It can 
implies x = 0. 

zero operator A ,  the corresponding matrix will have Zero 
also be shown that A is invertible (nonsingular) iff A x = O  

Let V, W, and A be as before; then for every vector x E Y: 

where the (2 are scalars, called the "coordinates." Since Ax E W, then: 

Now we can dsim the foll9wing important resdt via a theorem. 

meorem 1 

If we designate r' and CP by: 

Then the following is true: 

or, equivalently, 

n 

yi = ti,, ti . foi i = I .?. . . . . t i  

i l  
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Roof 

where Eq. (B.l) has been used. Now the above equation equated with Eq. 
(B.3) yields the result. 

Ikfhtion 7 

Let { e l ,  e 2 , .  . . , en )  and {hl ,h2,  . . . , h,} be bases in V. Since hi E Y for 
al l  j = 1,2,. . . ,n and {e , ,  e , , .  . . , e n }  is a basis, then 

n 

hi = Pfj e, , j = 1.2, . . . , n (B.4) 
i= I 

Now the matrix P = [P I n X n  is called the matrix of transition from the basis 
{e, ,e2,. . . , en}  to the tasis {h l ,  h,, . . . , h,). 

Let Q denote the matrix of transition from { h l , h 2 , .  . . , h n )  to 
{e,, e2,. . . ,en); then it is simple to venfy that: 

Let x E V, then 

n n 

x = C 4, ei = 7, hi 
i= I I =  I 

where g,'s and 7,'s are coordinates. 

I t  would be very easy to verify that: 

(B.6) 



or, equivalently, 

With the above background, we are ready to state a major result in linear 
algebra given via Theorem 2. The proof will not be given here. 

Theorem 2 

Let T be a linear transformation from V + W and let {e , ,  e2 ,  . . . , en 1 and 
{e:, e;, . . . ,ex} be bases in V and let VI , f 2 , .  . . ,fm 1 and vi,/;, . . . , f k }  
be basis in W. 

Let dd denote the matrix of T with respect to bases {e, ,  e?, . . . ,en}  and ul,f2;. . . , fm}  and 0 be a matrix with respect to the bases {e;,e;,  
. . . ,en} and ul,:.fl,. . . ,fA}, respectively. Also let S and U denote the 
matrices of transltion from {e , ,e2 ,  . . . ,en}  to {e;,e;,  . . . ,e:} and from 
VI ,f2, . . . ,fm} to V,', f;. . . . ,fk}. respectively. Then, 

v? = u-' d s 

For Proof see any linear algebra book. 

Important C o m ~  

If T: V -* V, then 

V = S - ' d  s (B.9) 

Because S = U, its substitutim in (8.8) will vield the result. 

Definitio\i 8 

We LOW define eigerivalues and eigenvectors, which are med often in our 
analysis. 
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I e t  A : Y +  V; then if 

Ax = hx 

where x E V and X is a scalar, then x is called an eigenvector and X is calied 
the eigenvalue. In general, 0 is an eigenvalue iff Ax = Ox = 0 for some x f 0, 
i.e., A is singular (not invertible). If A = f (identity operator), then fx = x 
X = 1. In the defMtion Ax = Ax, we say x belongs to A. 

Discdon 

(1) If Ax = X X ,  then 

A x - h r = O o ( A x - h r ) = ( A - A I ) x = O  

Thw, x is an eigenvector iff (A - xr) is a singular operator which is equivalent 
to saying that: 

determinent MtA-k , )  = I M(A I = o  

(2) From now on, we shall use A for MA, if there is no confusion about 
MA with respect to thc specific basis, since there is a 1-1 correspond- 
ence and onto mapping from A to MA (isomorphism). 

lkfmition 9 

I f  a matrix A* satisfies: 

A *  = (ii,,,’ 

where the bar denotes the complex conjugate, and T denotes the transpose, 
then A* is said to be an adjoint matrix of A (operator). If A *  J A ,  then A is 
said to be self-adjoint. 

Definition 10 

An inner p r o d u  on vector spa& ;* (over the real or complex field) is a 
coniplex number such that for every x . y , t E  Y and for any scalars CY and 0 
the following are satisfied: 

--- 
( I )  ( X . Y )  = ( v , x )  
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Defiition 11 

R e  norm of a vector x denoted by llxll is defined via: 

Now we are ready to make a very important definition. 

DeanitiOIl 12 

If A = A * ,  then   AX,^) is said to be positive definite if 

  AX,^) > 0, for all x # 0 

and negative definite if 

( A x , x )  < c) ,  for all x 4 0 

Similarly, if A satisfies 

  AX,^) > 0, for all x # 0 

ther A is said to be positive semi-definitc; the definition of negative semi- 
definiteness is done in a similar manner. 

Definition 13 

If A is none of the above, A is said to be indefinite, that is, (Ax. x) > 0 
for some x and (Ax, x) C 0 for another x. 
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Definition 14 

Ttie quadratic form of A = A* is defined via 

where [,'s are the coordinates of the vector x. 

The above backgrosnd should suffice to support the materid in the text. 
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PAGE 

The power spectrum is the Four’x transform of the wide-sense stationary 
dutocodation function. Thus, the manipulation of tlic Fourier transform and 
its corresponding inverse is extremely important. If a functionf(r) has a Fourier 
transform. it will also have a bilateral Laplace transform. The inverse of each 
transform is unique; however. it is easier to obtain the inverse of a bilateral 
taplace transform. Thus, the procedure of obtaining the inverse Fourier trans- 
form is to obtain the ccrmponding bilateral Lqlace imsform and apply the 
inversion formula. Thus, in W b i  follows, a discussion of Fourier and bilateral 
Laplace transfonn is made. 

Before we g:t involved with the concepts, we need some mathematical tools 
such a- definitions and theorems; however the proofs are not provided. 

M t i o n  I 

ferentiable at so. 

Ihewern I (Cauchy’s Integral Theorem) 

any closed curve C in the complex plane, then 

A firnctinn (complex) f(s) is analytic at so if f is single valued and dif- 

Given the fdnction f(s) such that f is analytic at all points vithin and on 

where the integral designates the ‘ntegral along the closed path C. 
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lbeorem 2 (Cauchy's lategal Famula) 

C, the following is true: 
Let f and C be as above; then for any point u which is an interior point in 

The result is proven via the aid of Theorem 1. Thus, in Theorem 2 every 
analytic function f(r) is completely determined in the interior of a given close 
curve C, where the values of f ( s )  are given on C only. Next the last two 
theorems are extended to get an important result which we shall give via 
Theorem 3, but first the singularities. 

Desaition 2 

If f ( s )  is not analytic at point so, then so is called a singular point. If there 
is a neighborhood of s = so sucli that f (s) has no other singular point, then so 
is  called the isolated singularity and, unless specified otherwise, all the singu- 
larities in the appendix a-e isolated singularities. 

Example 

by Is1 = p > 0 contains no singularity other than 0. Similarly. 
f ( s )  = I/s has an isolated singularity at s = 0, since the neighborhcod given 

s -  1 f (s) = - 
s(s2 + 4) 

has three isolated singularities at s = 0, s = 2j. s = -2 j .  The function 

has two isolided singular points at s = 1 and s = - 1 .  

Note that in the first two cases, the singularities are poles, and in the third 
case it is not a pole. 
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has singularities at s = f I/(&s), R = 1.2,. . . . These singularitis are isolated; 
however at s - 0, the singularity is not isolated, regardless of how small the 
radiwpofthecide Is1 ppmaybe. 

If f ( s )  has an isolated SiORularity at s = so, then f ( s )  can be represented via 
the mtinite series: 

b- I b-2 
s - so f (s) = bo + b,(s - so) + b2(s - soy + - - - + - + - + - - .  

(s - SOY 

m h  .D 

a$inition 3 

f ( s )  at the singularity s =so. 

Definition 4 

The above series is called Laurent's series and b - ,  is called the residue of 

A special case is where 

The singularity (isolated) s = so is called a pole of order m. 

Remark. For Eq. (C.3) b- , is given by: 



If m = 1, then s = so is said to be a simple pole and (f .4) reduces to: 

lseorem3 

and let s, ,s2,. . . .sm be the isolated sinphities of f(s) in the interior of C. 
then 

Leaf($) be analytic m the given regim R bounded by thedopedcunec 

where (6- is the residue corresponding to sk. 

The d t  is d e d  the residue theorem which states that regardless of how 
complicated the calculation of integral of f(s) around the contour is, it can be 
obtained by the summation of 1 residues multiplied by 2rj. 

Equation (C.6) will play a major d e  in the inversion proceso of a trano- 
form. 

ckfbrition 5 

Let f(r) and FJs) be functions defmed by: 

Then we say FJs) is the bilateral Laplace transform of f ( t ) .  provided that 
FJs) exists in some region u1 < u < u2. 
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nteorem4 
If FB(s) exists, then f ( r )  can be obtained: 

where d and R are given via the sketch and u, < d < u2 (see sketch). 

Aiw 
e C 

Roef 

For the bilateral transfom, the regions of convergence for f ( r )  is generally 
given by u, < u < g2. However, for the one-sided Laplace transform, the 
region of convergence is normally given by u > uo. 

For t > 0, then we can show: 

FJs) exp (s t )  ds = 0 

and for f < 0: 

Equations (C.9) or (C.lO), together with (C.8), implies that abc may be 
changed to abcefg for t < 0 and, for t > 0. abc can be changed to abcha. 
However, either abcefg or cbcha is a closed contour enclosing all the singulai- 
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ities as long 88 R + 0, which implies we can directly use the residue theorem 
(Tileorem 3). 

Thus, given r > 0, 

where (5- ) is the residue of the kth singularity to the left of abc. For 
1. It <0, f(r) IS given by: 

where (b-l)k is the residue of the kth singularity to the right of abc. The 
negative sign signifies the fact that the direction of abcha is clockwise and, 
therefore, negative. Thus, we have proven the inversion formula. 

Iff ( r )  is absolutely integrable, Le., 

then we shall defme 

(C. 13) 

as the Fourier transform of f ( r ) .  It can be shown that given .g (w) ,  f ( r )  
satisfies: 



(2)  1 

(11) exp(-iorlr). Q > 0 

sin (2nTv) 
(2nTv) 

____.- & 
U 

-2w 0 2w 

1 
I + jwr 
-- 

L 
2 2  w + a  

exp (-,urn - +) 



Equations (C.13) and (C.14) are called the Fourier transform pair. Now if the 
Fourier transform of f(t) exists, then for a fied u > 0, the Fourier transform 
of f ( r )  exp (-or) would also exist (it is absolutely integrable). Then 

1: I f ( r )  exp (-or)] exp (-jot) dr = f ( r )  exp [-(a t j a r ) ]  dr 1; 
Let s = o t j o  and denote the right-hand-side of the integral as f lu  t j w )  or 
qs). Now it is obvious that the function f ( r )  exp (-or), given its Fourier 
tnusform f l u  t i o ) ,  is: 

The last equation utilizes the inversion formula of a Fourier transform. Multi- 
plying both sides of the equation by exp (or), we get: 

Now making the change of variable s = a t jw will yield: 

(C.15) 

However, f l s )  is exactly the bilateral transform FB(s). Thus, we shall utilize 
the bilateral Laplace transform inversion formula. 

Note that the inversion of both Fourier and bilateral transforms are unique 
and if the Fourier transform of a waveform f ( t )  exists, so does its bilateral 
transform. The bilateral transform FB(s) can be obtained from v P ( j w )  in a 
unique manner, by substituting: 
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APPENDIX D 

A SPECIAL VECTOR SPACE 

Let VN be an N-dimensional vector space over a complex field. Let 
V,, f2,. . . ,fN} = V,}:, be any basis in VN. If there is an inner product 
defined with an associated norm, then it is a standard result that 
(fl ,f2, .  . . ,fN} can be orthonormalized. That is, {ei}zl is a basis such that: 

Now for any vector x E VN, it can he shown that: 

i= I 

and 

I= I 

The idea of orthonormalization can be extended to the infinite dimensional 
case. 
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An lnanite Dimensional Vector Space 

such that: 
Let L, denote the set of all piecewise continuous functions over [0,2n] 

It can be verified that L, is a vector space under the usual operations of 
functions: (f t g) ( r )  = f ( r )  t g(r) and (4 ( r )  = ol(l(r)). 

Now let us def>.!e the inner product (f,g) by: 

where the bar denotes the conjugate. Thus, the corresponding norm is given 
by: 

A simple computation shows that exp (inr) for n = 0,*1$2,. . . are mutually 
orthogonal in L, and it can be shown that: 

0, i f m # p  

2n. if m = n 

(exp (imr), exp (inr)) = 

However, we can orthonormalize the collection 



by letting 

L ,  with an orthonormal basis is said to be a complete space. Recall any 
finite-dimensional vector space is complete. 

Let H be a subspace of L ,  which is generated by 

that is, H consists of all linear combinations of the form 

where an's are scalars. 

Now for every f E H, we can write: 

where an = (f, en),  and an can be wri!ten as: 

Thus, from Eqs. (D.3) and (D.5). it is easy to verify that: 
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Now remembering that: 

and utilizing the fact that an = (f, en), we can rewrite: 

Equation (D.8) is called Parseval’s equality. 

Important Remarks 

( I )  It must be emphasized that the expansion 

is not interpreted as saying the zries is pointwise converging to the 
function. Equation (D.9) actually means that f, E L, is given by: 

and converges to f i n  the norm specified in L , .  That is: 

(2) I f  we change 2n to T and the interval [0.2n] is changed to 1-772. 
T / 2 ] ,  we can then write: 



where wo = 2n1T. Since 

are pairwise orthogonal, 

0, i f m # n  

T, if m = n 

(exp (imw,tl, exp Cinwotl) = 

Thus, we have: 

where en = (l/cn exp {nnwofI and a = (f, en). 

ParseVal's equality becomes: 

From which, we obtain: 

(D.13) 

The last equation is another form of ParseVal's equality. 
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APPENDIX E 

STATE VARIABLES 

Let X(t)  he an n-vector such that: 

where X(t)  and A(r) are continuously differentiable and A(r) is an ti X n 
matrix. The solution of Eq. (E.1) is Sven by: 

(E.24) 

where 

This is easy to verify. since the solution of the differential equation for a 
specified condition is unique and Z(f) in Eq. (E.?) will be a solution with the 
initial condition: 

X( to )  = #(to, t o )  Xo = I Xo = Xo 
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--a- 
Lat t ,  and t ,  be two different times arch that r ,  and t ,  are > to. Then 

tw hare: 

and 

Now if the initial condition is at t l ,  then X(r,) is givea by: 

Substituting at, ) from Eq- (E.4; into Eq. (E.5) yields: 

C m p i n g  (E3) and (E.6) gives rise tu: 

As a special case of Eq. (E.?'), let t2 = to. Then 

Equations (E.7) and (E.8) are very important. I i  can be verified hat @(*.e) 
$0.  From Eq. (E.8) it is obvious that the inverse of N t , ,  t o )  is obtained by 
changing the arguments t I  and to io ?o and f I  , respectively. 
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Solve the differentid equation vis the transition matrix. 

= 2#. Mro,ro) = 1 

will imply that 

Example 2 

Repeat Example I for: 

Solution 

6 = a(r) dr, 1,). Nro, io) = I 

implies that i/@ = n(t)  from which wc get: 
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Ceneral Solution with Forcing Function Inputs 

Consider the genera! time-varying differential equation: 

(E.9a) 

(E.Yb) 

Assume the solution X(t)  exis's and 

is the initial condition. We claim X(t)  is given by: 

(E.lOb) 

Let us verify Eq. (E.IC). For convenience, we shall not write the arguments in 
t .  Let 

Taking the derivative of both sides yields: 

(E.12) 



Equating the right-hand side of Eq. (E%) with (E.12) gives rise to: 

AX t BU = &Z t & (E.13) 

NOW from 6 = A# we assert that: 

& = A ~ = A x  (E.14) 

where in the above we have used Eq. (E.11). 

Substituting (E.14) into Eq. (E.12) yields: 

ei = B ~ J  or, equivalently, i = 4-l BU (E. IS) 

where upon integration, we get: 

Utilizing Eq. (E.l I )  and the fact that Z(ro) = X(ro), we obtain: 

which concludes the first part of the proof. 

To prove the second part, we make use of @-' (A. fo)  = $( ro ,A)  which 
implies: 

Substituting (E.18) into (E.17) gives rise to' 



which is the desired result. 

Substituting (E.17) or (E.19) 11110 (E.9b) will yield the output. Therefore, 

(E.20) 

Thus. the most important part of the solution is acquisition of the transition 
matrix H-;). which is needed to solve X(r). Once X(r) is known, Y(t)  can be 
obtained immediately (see E.20). 

To obtain $(*,e) for the time-varying case is not easy and the general 
equation 

must be solved for. However, for the time-invariant case, where A ,  B, C, and 
D are constant matrices, the solution is considerably easier. Before discussing 
this special case, let us first define: 

Now for the time invariant case, $(r ,  to) becomes: 

To verify (E.22) is very simple since 

d 
tit - exp { A 0  - to)}  = A exp { ~ ( r  - to))  

(E.21) 

(E.22) 

with $(to, to)  = A' = 1. Now, without any loss of generality, assume to = 0 
and let us state the following claim. 
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The transition matrix exp {At) is obtained as: 

exp {At} = S?-'(SI - A)-' 

nus. exp {At) is the inverse Laplace transform of (si - A)- ' .  

The proof is simple. Take the Laplace transform of (E.9a) to get: 

S S ( S )  - x, = A&(s) t BW(S) 

(E.23) 

(E.24) 

where E ( s )  a n d q s )  are corresponding Laplace transforms of X ( * )  and &*). 
This can be done since A and B are both constant matrices. From (E.24), we 
can get: 

E($) = (sf - A)-' KO t (si - A)-' BW(5) (E.25) 

Taking the inverse Laplace transform of the above and equating the result 
with the right-hand side of (E.19) with to = 0, we obtain: 

as asserted. 
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